Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import gradio as gr | |
| import torchvision | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.optim as optim | |
| # This is just to show an interface where one draws a number and gets prediction. | |
| n_epochs = 10 | |
| batch_size_train = 128 | |
| batch_size_test = 1000 | |
| learning_rate = 0.01 | |
| momentum = 0.5 | |
| log_interval = 10 | |
| random_seed = 1 | |
| TRAIN_CUTOFF = 10 | |
| MODEL_PATH = 'weights' | |
| os.makedirs(MODEL_PATH,exist_ok=True) | |
| METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json') | |
| MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth') | |
| OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth') | |
| REPOSITORY_DIR = "data" | |
| LOCAL_DIR = 'data_local' | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| MODEL_REPO = 'mnist-adversarial-model' | |
| HF_DATASET ="mnist-adversarial-dataset" | |
| DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}" | |
| MODEL_REPO_URL = f"https://huggingface.co/model/chrisjay/{MODEL_REPO}" | |
| torch.backends.cudnn.enabled = False | |
| torch.manual_seed(random_seed) | |
| TRAIN_TRANSFORM = torchvision.transforms.Compose([ | |
| torchvision.transforms.ToTensor(), | |
| torchvision.transforms.Normalize( | |
| (0.1307,), (0.3081,)) | |
| ]) | |
| # Source: https://nextjournal.com/gkoehler/pytorch-mnist | |
| class MNIST_Model(nn.Module): | |
| def __init__(self): | |
| super(MNIST_Model, self).__init__() | |
| self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
| self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
| self.conv2_drop = nn.Dropout2d() | |
| self.fc1 = nn.Linear(320, 50) | |
| self.fc2 = nn.Linear(50, 10) | |
| def forward(self, x): | |
| x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
| x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | |
| x = x.view(-1, 320) | |
| x = F.relu(self.fc1(x)) | |
| x = F.dropout(x, training=self.training) | |
| x = self.fc2(x) | |
| return F.log_softmax(x) | |
| train_loader = torch.utils.data.DataLoader( | |
| torchvision.datasets.MNIST('files/', train=True, download=True, | |
| transform=torchvision.transforms.Compose([ | |
| torchvision.transforms.ToTensor(), | |
| torchvision.transforms.Normalize( | |
| mean=(0.1307,), std=(0.3081,)) | |
| ])), | |
| batch_size=batch_size_train, shuffle=True) | |
| test_loader = torch.utils.data.DataLoader( | |
| torchvision.datasets.MNIST('files/', train=False, download=True, | |
| transform=torchvision.transforms.Compose([ | |
| torchvision.transforms.ToTensor(), | |
| torchvision.transforms.Normalize( | |
| (0.1307,), (0.3081,)) | |
| ])), | |
| batch_size=batch_size_test, shuffle=True) | |
| def train(epoch,network,optimizer,train_loader): | |
| train_losses=[] | |
| network.train() | |
| for batch_idx, (data, target) in enumerate(train_loader): | |
| optimizer.zero_grad() | |
| output = network(data) | |
| loss = F.nll_loss(output, target) | |
| loss.backward() | |
| optimizer.step() | |
| if batch_idx % log_interval == 0: | |
| print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
| epoch, batch_idx * len(data), len(train_loader.dataset), | |
| 100. * batch_idx / len(train_loader), loss.item())) | |
| train_losses.append(loss.item()) | |
| torch.save(network.state_dict(), MODEL_WEIGHTS_PATH) | |
| torch.save(optimizer.state_dict(), OPTIMIZER_PATH) | |
| def test(): | |
| test_losses=[] | |
| network.eval() | |
| test_loss = 0 | |
| correct = 0 | |
| with torch.no_grad(): | |
| for data, target in test_loader: | |
| output = network(data) | |
| test_loss += F.nll_loss(output, target, size_average=False).item() | |
| pred = output.data.max(1, keepdim=True)[1] | |
| correct += pred.eq(target.data.view_as(pred)).sum() | |
| test_loss /= len(test_loader.dataset) | |
| test_losses.append(test_loss) | |
| acc = 100. * correct / len(test_loader.dataset) | |
| acc = acc.item() | |
| test_metric = '〽Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format( | |
| test_loss,acc) | |
| print(test_metric) | |
| return test_metric,acc | |
| random_seed = 1 | |
| torch.backends.cudnn.enabled = False | |
| torch.manual_seed(random_seed) | |
| network = MNIST_Model() #Initialize the model with random weights | |
| optimizer = optim.SGD(network.parameters(), lr=learning_rate, | |
| momentum=momentum) | |
| model_state_dict = MODEL_WEIGHTS_PATH | |
| optimizer_state_dict = OPTIMIZER_PATH | |
| if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict): | |
| network_state_dict = torch.load(model_state_dict) | |
| network.load_state_dict(network_state_dict) | |
| optimizer_state_dict = torch.load(optimizer_state_dict) | |
| optimizer.load_state_dict(optimizer_state_dict) | |
| # Train | |
| #for epoch in range(n_epochs): | |
| # train(epoch,network,optimizer,train_loader) | |
| # test() | |
| def image_classifier(inp): | |
| """ | |
| It takes an image as input and returns a dictionary of class labels and their corresponding | |
| confidence scores. | |
| :param inp: the image to be classified | |
| :return: A dictionary of the class index and the confidence value. | |
| """ | |
| input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0) | |
| with torch.no_grad(): | |
| prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0) | |
| #pred_number = prediction.data.max(1, keepdim=True)[1] | |
| sorted_prediction = torch.sort(prediction,descending=True) | |
| confidences={} | |
| for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()): | |
| confidences.update({s:v}) | |
| return confidences | |
| def main(): | |
| block = gr.Blocks() | |
| with block: | |
| with gr.Row(): | |
| image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil") | |
| label_output = gr.outputs.Label(num_top_classes=10) | |
| image_input.change(image_classifier,inputs = [image_input],outputs=[label_output]) | |
| block.launch() | |
| if __name__ == "__main__": | |
| main() |