Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,30 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
st.
|
| 11 |
-
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
max_length = st.slider("
|
| 18 |
|
| 19 |
-
# Button to trigger code generation
|
| 20 |
if st.button("Generate Code"):
|
| 21 |
if prompt.strip():
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# Display generated code
|
| 28 |
-
st.write("### Generated Code:")
|
| 29 |
-
st.code(generated_code, language="python")
|
| 30 |
else:
|
| 31 |
-
st.warning("Please enter a prompt
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
+
@st.cache_resource
|
| 5 |
+
def load_model():
|
| 6 |
+
model_name = "Salesforce/codet5-small"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 9 |
+
return tokenizer, model
|
| 10 |
|
| 11 |
+
# Load the model and tokenizer (cached)
|
| 12 |
+
with st.spinner("Loading model..."):
|
| 13 |
+
tokenizer, model = load_model()
|
| 14 |
|
| 15 |
+
# Streamlit UI
|
| 16 |
+
st.title("Code Generator with Hugging Face")
|
| 17 |
+
st.write("Generate code snippets from natural language prompts!")
|
| 18 |
|
| 19 |
+
prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate factorial.")
|
| 20 |
+
max_length = st.slider("Select maximum length of generated code:", min_value=20, max_value=200, value=50, step=10)
|
| 21 |
|
|
|
|
| 22 |
if st.button("Generate Code"):
|
| 23 |
if prompt.strip():
|
| 24 |
+
with st.spinner("Generating code..."):
|
| 25 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 26 |
+
outputs = model.generate(inputs.input_ids, max_length=max_length, num_beams=4, early_stopping=True)
|
| 27 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
+
st.text_area("Generated Code:", generated_code, height=200)
|
|
|
|
|
|
|
|
|
|
| 29 |
else:
|
| 30 |
+
st.warning("Please enter a prompt!")
|