Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| def load_model(): | |
| model_name = "Salesforce/codet5-base" # Switch to 'codet5-base' for better results | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| return tokenizer, model | |
| # Load the model and tokenizer | |
| tokenizer, model = load_model() | |
| st.title("Code Generator") | |
| st.write("Generate code snippets from natural language prompts using CodeT5!") | |
| prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate factorial.") | |
| max_length = st.slider("Maximum length of generated code:", 20, 300, 100) | |
| if st.button("Generate Code"): | |
| if prompt.strip(): | |
| with st.spinner("Generating code..."): | |
| inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) | |
| # Use sampling-based generation for better quality | |
| outputs = model.generate( | |
| inputs.input_ids, | |
| max_length=max_length, | |
| temperature=0.7, | |
| top_p=0.95, | |
| do_sample=True, | |
| ) | |
| # Debugging: Show raw token output | |
| st.write("### Debugging: Raw Model Output") | |
| st.json(outputs.tolist()) | |
| # Decode tokens properly | |
| generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
| st.write("### Generated Code:") | |
| st.code(generated_code, language="python") | |
| else: | |
| st.warning("Please enter a prompt!") | |