Spaces:
Runtime error
Runtime error
Logging
Browse files
app.py
CHANGED
|
@@ -12,22 +12,40 @@ from PIL import Image
|
|
| 12 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 13 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 14 |
from trellis.utils import render_utils, postprocessing_utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 17 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 18 |
|
| 19 |
-
# Funciones auxiliares
|
| 20 |
def start_session(req: gr.Request):
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
os.makedirs(user_dir, exist_ok=True)
|
| 23 |
|
| 24 |
def end_session(req: gr.Request):
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
|
|
|
|
|
|
| 29 |
images = [image[0] for image in images]
|
| 30 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
|
|
|
| 31 |
return processed_images
|
| 32 |
|
| 33 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
@@ -67,7 +85,9 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
|
| 67 |
return gs, mesh
|
| 68 |
|
| 69 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
| 72 |
@spaces.GPU
|
| 73 |
def image_to_3d(
|
|
@@ -80,12 +100,15 @@ def image_to_3d(
|
|
| 80 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 81 |
req: gr.Request,
|
| 82 |
) -> Tuple[dict, str]:
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
outputs = pipeline.run_multi_image(
|
| 85 |
[image[0] for image in multiimages],
|
| 86 |
seed=seed,
|
| 87 |
formats=["gaussian", "mesh"],
|
| 88 |
-
preprocess_image=False,
|
| 89 |
sparse_structure_sampler_params={
|
| 90 |
"steps": ss_sampling_steps,
|
| 91 |
"cfg_strength": ss_guidance_strength,
|
|
@@ -96,13 +119,17 @@ def image_to_3d(
|
|
| 96 |
},
|
| 97 |
mode=multiimage_algo,
|
| 98 |
)
|
|
|
|
|
|
|
| 99 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 100 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 101 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 102 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 103 |
imageio.mimsave(video_path, video, fps=15)
|
|
|
|
| 104 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 105 |
torch.cuda.empty_cache()
|
|
|
|
| 106 |
return state, video_path
|
| 107 |
|
| 108 |
@spaces.GPU(duration=90)
|
|
@@ -112,15 +139,19 @@ def extract_glb(
|
|
| 112 |
texture_size: int,
|
| 113 |
req: gr.Request,
|
| 114 |
) -> Tuple[str, str]:
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
gs, mesh = unpack_state(state)
|
| 117 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 118 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 119 |
glb.export(glb_path)
|
|
|
|
| 120 |
torch.cuda.empty_cache()
|
|
|
|
| 121 |
return glb_path, glb_path
|
| 122 |
|
| 123 |
-
# Interfaz Gradio
|
| 124 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 125 |
gr.Markdown("""
|
| 126 |
# UTPL - Conversión de Multiples Imágenes a objetos 3D usando IA
|
|
@@ -164,24 +195,26 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 164 |
|
| 165 |
output_buf = gr.State()
|
| 166 |
|
| 167 |
-
|
| 168 |
-
demo.load(start_session)
|
| 169 |
demo.unload(end_session)
|
| 170 |
|
| 171 |
multiimage_prompt.upload(
|
| 172 |
preprocess_images,
|
| 173 |
inputs=[multiimage_prompt],
|
| 174 |
outputs=[multiimage_prompt],
|
|
|
|
| 175 |
)
|
| 176 |
|
| 177 |
generate_btn.click(
|
| 178 |
get_seed,
|
| 179 |
inputs=[randomize_seed, seed],
|
| 180 |
outputs=[seed],
|
|
|
|
| 181 |
).then(
|
| 182 |
image_to_3d,
|
| 183 |
inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 184 |
outputs=[output_buf, video_output],
|
|
|
|
| 185 |
).then(
|
| 186 |
lambda: gr.Button(interactive=True),
|
| 187 |
outputs=[extract_glb_btn],
|
|
@@ -196,6 +229,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 196 |
extract_glb,
|
| 197 |
inputs=[output_buf, mesh_simplify, texture_size],
|
| 198 |
outputs=[model_output, download_glb],
|
|
|
|
| 199 |
).then(
|
| 200 |
lambda: gr.Button(interactive=True),
|
| 201 |
outputs=[download_glb],
|
|
|
|
| 12 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 13 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 14 |
from trellis.utils import render_utils, postprocessing_utils
|
| 15 |
+
|
| 16 |
+
import logging
|
| 17 |
+
|
| 18 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_MULTIIMG - %(levelname)s - %(message)s')
|
| 19 |
+
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 23 |
|
|
|
|
| 24 |
def start_session(req: gr.Request):
|
| 25 |
+
session_hash = str(req.session_hash)
|
| 26 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 27 |
+
logging.info(f"START SESSION: Creando directorio para la sesión {session_hash} en {user_dir}")
|
| 28 |
os.makedirs(user_dir, exist_ok=True)
|
| 29 |
|
| 30 |
def end_session(req: gr.Request):
|
| 31 |
+
session_hash = str(req.session_hash)
|
| 32 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 33 |
+
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesión {session_hash} en {user_dir}")
|
| 34 |
+
if os.path.exists(user_dir):
|
| 35 |
+
try:
|
| 36 |
+
shutil.rmtree(user_dir)
|
| 37 |
+
logging.info(f"Directorio de la sesión {session_hash} eliminado correctamente.")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
logging.error(f"Error al eliminar el directorio de la sesión {session_hash}: {e}")
|
| 40 |
+
else:
|
| 41 |
+
logging.warning(f"El directorio de la sesión {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")
|
| 42 |
|
| 43 |
+
def preprocess_images(images: List[Tuple[Image.Image, str]], req: gr.Request) -> List[Image.Image]:
|
| 44 |
+
session_hash = str(req.session_hash)
|
| 45 |
+
logging.info(f"[{session_hash}] Preprocesando {len(images)} imágenes.")
|
| 46 |
images = [image[0] for image in images]
|
| 47 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 48 |
+
logging.info(f"[{session_hash}] Preprocesamiento completado.")
|
| 49 |
return processed_images
|
| 50 |
|
| 51 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
|
| 85 |
return gs, mesh
|
| 86 |
|
| 87 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 88 |
+
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 89 |
+
logging.info(f"Usando seed: {new_seed}")
|
| 90 |
+
return new_seed
|
| 91 |
|
| 92 |
@spaces.GPU
|
| 93 |
def image_to_3d(
|
|
|
|
| 100 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 101 |
req: gr.Request,
|
| 102 |
) -> Tuple[dict, str]:
|
| 103 |
+
session_hash = str(req.session_hash)
|
| 104 |
+
logging.info(f"[{session_hash}] Iniciando image_to_3d con {len(multiimages)} imágenes.")
|
| 105 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 106 |
+
|
| 107 |
outputs = pipeline.run_multi_image(
|
| 108 |
[image[0] for image in multiimages],
|
| 109 |
seed=seed,
|
| 110 |
formats=["gaussian", "mesh"],
|
| 111 |
+
preprocess_image=False,
|
| 112 |
sparse_structure_sampler_params={
|
| 113 |
"steps": ss_sampling_steps,
|
| 114 |
"cfg_strength": ss_guidance_strength,
|
|
|
|
| 119 |
},
|
| 120 |
mode=multiimage_algo,
|
| 121 |
)
|
| 122 |
+
|
| 123 |
+
logging.info(f"[{session_hash}] Generación del modelo completada. Renderizando video...")
|
| 124 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 125 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 126 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 127 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 128 |
imageio.mimsave(video_path, video, fps=15)
|
| 129 |
+
|
| 130 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 131 |
torch.cuda.empty_cache()
|
| 132 |
+
logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
|
| 133 |
return state, video_path
|
| 134 |
|
| 135 |
@spaces.GPU(duration=90)
|
|
|
|
| 139 |
texture_size: int,
|
| 140 |
req: gr.Request,
|
| 141 |
) -> Tuple[str, str]:
|
| 142 |
+
session_hash = str(req.session_hash)
|
| 143 |
+
logging.info(f"[{session_hash}] Iniciando extract_glb...")
|
| 144 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 145 |
+
|
| 146 |
gs, mesh = unpack_state(state)
|
| 147 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 148 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 149 |
glb.export(glb_path)
|
| 150 |
+
|
| 151 |
torch.cuda.empty_cache()
|
| 152 |
+
logging.info(f"[{session_hash}] GLB extraído. Devolviendo: {glb_path}")
|
| 153 |
return glb_path, glb_path
|
| 154 |
|
|
|
|
| 155 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 156 |
gr.Markdown("""
|
| 157 |
# UTPL - Conversión de Multiples Imágenes a objetos 3D usando IA
|
|
|
|
| 195 |
|
| 196 |
output_buf = gr.State()
|
| 197 |
|
| 198 |
+
demo.load(start_session, inputs=None, outputs=None, api_name="start_session")
|
|
|
|
| 199 |
demo.unload(end_session)
|
| 200 |
|
| 201 |
multiimage_prompt.upload(
|
| 202 |
preprocess_images,
|
| 203 |
inputs=[multiimage_prompt],
|
| 204 |
outputs=[multiimage_prompt],
|
| 205 |
+
api_name="preprocess_images"
|
| 206 |
)
|
| 207 |
|
| 208 |
generate_btn.click(
|
| 209 |
get_seed,
|
| 210 |
inputs=[randomize_seed, seed],
|
| 211 |
outputs=[seed],
|
| 212 |
+
api_name="get_seed"
|
| 213 |
).then(
|
| 214 |
image_to_3d,
|
| 215 |
inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 216 |
outputs=[output_buf, video_output],
|
| 217 |
+
api_name="image_to_3d"
|
| 218 |
).then(
|
| 219 |
lambda: gr.Button(interactive=True),
|
| 220 |
outputs=[extract_glb_btn],
|
|
|
|
| 229 |
extract_glb,
|
| 230 |
inputs=[output_buf, mesh_simplify, texture_size],
|
| 231 |
outputs=[model_output, download_glb],
|
| 232 |
+
api_name="extract_glb"
|
| 233 |
).then(
|
| 234 |
lambda: gr.Button(interactive=True),
|
| 235 |
outputs=[download_glb],
|