Spaces:
Running
Running
Joschka Strueber
[Add] add bbh and gpqa benchmarks again with correct answer_index selection
0a42e99
| import gradio as gr | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| from io import BytesIO | |
| from PIL import Image | |
| from datasets.exceptions import DatasetNotFoundError | |
| from src.dataloading import get_leaderboard_datasets | |
| from src.similarity import load_data_and_compute_similarities | |
| # Set matplotlib backend for non-GUI environments | |
| plt.switch_backend('Agg') | |
| def create_heatmap(selected_models, selected_dataset, selected_metric): | |
| if not selected_models or not selected_dataset: | |
| return None | |
| # Sort models and get short names | |
| similarities = load_data_and_compute_similarities(selected_models, selected_dataset, selected_metric) | |
| # Check if similarity matrix contains NaN rows | |
| failed_models = [] | |
| for i in range(len(similarities)): | |
| if np.isnan(similarities[i]).all(): | |
| failed_models.append(selected_models[i]) | |
| if failed_models: | |
| gr.Warning(f"Failed to load data for models: {', '.join(failed_models)}") | |
| # Create figure and heatmap using seaborn | |
| plt.figure(figsize=(8, 6)) | |
| ax = sns.heatmap( | |
| similarities, | |
| annot=True, | |
| fmt=".2f", | |
| cmap="viridis", | |
| vmin=0, | |
| vmax=1, | |
| xticklabels=selected_models, | |
| yticklabels=selected_models | |
| ) | |
| # Customize plot | |
| plt.title(f"{selected_metric} for {selected_dataset}", fontsize=16) | |
| plt.xlabel("Models", fontsize=14) | |
| plt.ylabel("Models", fontsize=14) | |
| plt.xticks(rotation=45, ha='right') | |
| plt.yticks(rotation=0) | |
| plt.tight_layout() | |
| # Save to buffer | |
| buf = BytesIO() | |
| plt.savefig(buf, format="png", dpi=100, bbox_inches="tight") | |
| plt.close() | |
| # Convert to PIL Image | |
| buf.seek(0) | |
| img = Image.open(buf).convert("RGB") | |
| return img | |
| def validate_inputs(selected_models, selected_dataset): | |
| if not selected_models: | |
| raise gr.Error("Please select at least one model!") | |
| if not selected_dataset: | |
| raise gr.Error("Please select a dataset!") | |
| def update_datasets_based_on_models(selected_models, current_dataset): | |
| try: | |
| available_datasets = get_leaderboard_datasets(selected_models) if selected_models else [] | |
| if current_dataset in available_datasets: | |
| valid_dataset = current_dataset | |
| elif "mmlu_pro" in available_datasets: | |
| valid_dataset = "mmlu_pro" | |
| else: | |
| valid_dataset = None | |
| return gr.update( | |
| choices=available_datasets, | |
| value=valid_dataset | |
| ) | |
| except DatasetNotFoundError as e: | |
| # Extract model name from error message | |
| model_name = e.args[0].split("'")[1] | |
| model_name = model_name.split("/")[-1].replace("__", "/").replace("_details", "") | |
| # Display a shorter warning | |
| gr.Warning(f"Data for '{model_name}' is gated or unavailable.") | |
| return gr.update(choices=[], value=None) | |
| custom_css = """ | |
| .image-container img { | |
| width: 80% !important; /* Make it 80% of the parent container */ | |
| height: auto !important; /* Maintain aspect ratio */ | |
| max-width: 800px; /* Optional: Set a max limit */ | |
| display: block; | |
| margin: auto; /* Center the image */ | |
| } | |
| """ |