speech analysis code complete
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import librosa
|
|
|
|
| 4 |
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
| 5 |
from transformers import pipeline
|
| 6 |
|
|
@@ -22,23 +23,22 @@ if uploaded_file is not None:
|
|
| 22 |
# Display audio player
|
| 23 |
st.audio(uploaded_file, format='audio/wav')
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
inputs = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="
|
| 27 |
-
|
| 28 |
-
# Predict emotion
|
| 29 |
with torch.no_grad():
|
| 30 |
-
|
|
|
|
| 31 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 32 |
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
|
| 33 |
|
| 34 |
-
# Display the result
|
| 35 |
-
|
| 36 |
|
| 37 |
-
# Alternatively using the pipeline
|
| 38 |
-
|
|
|
|
| 39 |
st.write("Top 5 Predicted Emotions:")
|
| 40 |
for result in results:
|
| 41 |
st.write(f"{result['label']}: {result['score']:.4f}")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
import librosa
|
| 4 |
+
import numpy as np
|
| 5 |
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
| 6 |
from transformers import pipeline
|
| 7 |
|
|
|
|
| 23 |
# Display audio player
|
| 24 |
st.audio(uploaded_file, format='audio/wav')
|
| 25 |
|
| 26 |
+
# Convert the audio file to the format expected by the classifier
|
| 27 |
+
inputs = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="np")
|
| 28 |
+
|
| 29 |
+
# Predict emotion using the model directly
|
| 30 |
with torch.no_grad():
|
| 31 |
+
inputs_pt = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="pt")
|
| 32 |
+
logits = model(**inputs_pt).logits
|
| 33 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 34 |
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
|
| 35 |
|
| 36 |
+
# Display the result from the model directly
|
| 37 |
+
st.write("Predicted Emotion:", labels[0])
|
| 38 |
|
| 39 |
+
# Alternatively, using the pipeline
|
| 40 |
+
inputs_ndarray = inputs["input_values"][0]
|
| 41 |
+
results = classifier(inputs_ndarray, top_k=5)
|
| 42 |
st.write("Top 5 Predicted Emotions:")
|
| 43 |
for result in results:
|
| 44 |
st.write(f"{result['label']}: {result['score']:.4f}")
|
|
|
|
|
|
|
|
|