Spaces:
Running
Running
File size: 12,913 Bytes
62e3411 7037048 62e3411 7037048 62e3411 7037048 9ff78c7 aca1362 7037048 aca1362 7037048 93872e8 7037048 93872e8 7037048 9ff78c7 aca1362 7037048 93872e8 7037048 9ff78c7 93872e8 7037048 93872e8 7037048 62e3411 7037048 4956922 3275e74 93872e8 3275e74 93872e8 3275e74 93872e8 4956922 1b3d1f6 4956922 62e3411 93872e8 4956922 7f37b04 4956922 7037048 62e3411 7037048 62e3411 7037048 4821af3 93872e8 4956922 3275e74 4956922 aca1362 3275e74 aca1362 3275e74 aca1362 3275e74 aca1362 3275e74 aca1362 3275e74 aca1362 62e3411 aca1362 62e3411 4956922 aca1362 7f37b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
#!/usr/bin/env python3
"""
Piper TTS Gradio Demo for Hugging Face Spaces
Supports Japanese and English text-to-speech using ONNX models
"""
import json
import logging
import gradio as gr
import numpy as np
import onnxruntime
from app_imports import ESPEAK_AVAILABLE, PYOPENJTALK_AVAILABLE
# Download models if not present
from download_models import download_models
# Ensure models are downloaded
download_models()
# Import optional dependencies
if PYOPENJTALK_AVAILABLE:
import pyopenjtalk
if ESPEAK_AVAILABLE:
from espeak_phonemizer import Phonemizer
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configurations
MODELS = {
"Japanese (Medium)": {
"path": "models/ja_JP-test-medium.onnx",
"config": "models/ja_JP-test-medium.onnx.json",
"language": "ja",
},
"English (Test)": {
"path": "models/test_voice.onnx",
"config": "models/test_voice.onnx.json",
"language": "en",
},
}
# Basic English word to IPA mapping for common words
# This is a simplified fallback when espeak-ng is not available
ENGLISH_IPA_MAP = {
"hello": "hɛloʊ",
"world": "wɜrld",
"this": "ðɪs",
"is": "ɪz",
"a": "ə",
"test": "tɛst",
"text": "tɛkst",
"to": "tu",
"speech": "spitʃ",
"demo": "dɛmoʊ",
"welcome": "wɛlkəm",
"piper": "paɪpər",
"tts": "titiɛs",
"enjoy": "ɛndʒɔɪ",
"high": "haɪ",
"quality": "kwɑləti",
"synthesis": "sɪnθəsɪs",
"the": "ðə",
"and": "ænd",
"for": "fɔr",
"with": "wɪð",
"you": "ju",
"can": "kæn",
"it": "ɪt",
"that": "ðæt",
"have": "hæv",
"from": "frʌm",
"or": "ɔr",
"which": "wɪtʃ",
"one": "wʌn",
"would": "wʊd",
"all": "ɔl",
"will": "wɪl",
"there": "ðɛr",
"say": "seɪ",
"who": "hu",
"make": "meɪk",
"when": "wɛn",
"time": "taɪm",
"if": "ɪf",
"no": "noʊ",
"way": "weɪ",
"has": "hæz",
"yes": "jɛs",
"good": "gʊd",
"very": "vɛri",
}
# Japanese multi-character phoneme to Unicode PUA mapping
# This mapping must match the C++ implementation and training data
PHONEME_TO_PUA = {
# Long vowels
"a:": "\ue000",
"i:": "\ue001",
"u:": "\ue002",
"e:": "\ue003",
"o:": "\ue004",
# Special consonants
"cl": "\ue005", # Geminate/glottal stop
# Palatalized consonants
"ky": "\ue006",
"kw": "\ue007",
"gy": "\ue008",
"gw": "\ue009",
"ty": "\ue00a",
"dy": "\ue00b",
"py": "\ue00c",
"by": "\ue00d",
# Affricates and special sounds
"ch": "\ue00e",
"ts": "\ue00f",
"sh": "\ue010",
"zy": "\ue011",
"hy": "\ue012",
# Palatalized nasals/liquids
"ny": "\ue013",
"my": "\ue014",
"ry": "\ue015",
}
def load_model_config(config_path: str) -> dict:
"""Load model configuration from JSON file"""
with open(config_path, encoding="utf-8") as f:
return json.load(f)
def map_phonemes(phonemes: list[str]) -> list[str]:
"""Map multi-character phonemes to Unicode PUA characters"""
result = []
for phoneme in phonemes:
if phoneme in PHONEME_TO_PUA:
result.append(PHONEME_TO_PUA[phoneme])
else:
result.append(phoneme)
return result
def text_to_phonemes(text: str, language: str) -> list[str]:
"""Convert text to phoneme strings based on language"""
if language == "ja":
if PYOPENJTALK_AVAILABLE:
# Get phonemes from OpenJTalk
labels = pyopenjtalk.extract_fullcontext(text)
phonemes = []
for label in labels:
# Extract phoneme from label
if "-" in label and "+" in label:
phoneme = label.split("-")[1].split("+")[0]
if phoneme not in ["sil", "pau"]:
phonemes.append(phoneme)
# Add sentence markers
phonemes = ["^"] + phonemes + ["$"]
# Convert multi-character phonemes to Unicode PUA
phonemes = map_phonemes(phonemes)
else:
logger.warning("pyopenjtalk not available, using fallback")
# Simple fallback - just use dummy phonemes
phonemes = ["^"] + list("aiueo") * 5 + ["$"]
elif ESPEAK_AVAILABLE: # English
phonemizer = Phonemizer("en-us")
phoneme_str = phonemizer.phonemize(text)
# Convert phoneme string to list
phonemes = ["^"] + list(phoneme_str.replace(" ", "")) + ["$"]
else:
logger.warning("espeak_phonemizer not available, using IPA fallback")
# IPA-based fallback for better English pronunciation
words = text.lower().split()
phonemes = ["^"]
for i, word in enumerate(words):
# Add space between words
if i > 0:
phonemes.append(" ")
# Remove punctuation from word
clean_word = "".join(c for c in word if c.isalpha())
if clean_word in ENGLISH_IPA_MAP:
# Use IPA mapping if available
ipa = ENGLISH_IPA_MAP[clean_word]
phonemes.extend(list(ipa))
else:
# Fall back to character-by-character for unknown words
phonemes.extend(list(clean_word))
phonemes.append("$")
return phonemes
def phonemes_to_ids(phonemes: list[str], config: dict) -> list[int]:
"""Convert phonemes to model input IDs"""
phoneme_id_map = config.get("phoneme_id_map", {})
ids = []
for phoneme in phonemes:
if phoneme in phoneme_id_map:
ids.extend(phoneme_id_map[phoneme])
else:
# Use pad token for unknown phonemes
ids.append(0)
return ids
def synthesize_speech(
text: str,
model_name: str,
speaker_id: int = 0,
length_scale: float = 1.0,
noise_scale: float = 0.667,
noise_w: float = 0.8,
) -> tuple[int, np.ndarray]:
"""Generate speech from text using selected model"""
if not text.strip():
raise gr.Error("Please enter some text")
if model_name not in MODELS:
raise gr.Error("Invalid model selected")
model_info = MODELS[model_name]
config = load_model_config(model_info["config"])
# Convert text to phoneme IDs
phonemes = text_to_phonemes(text, model_info["language"])
phoneme_ids = phonemes_to_ids(phonemes, config)
if not phoneme_ids:
raise gr.Error("Failed to convert text to phonemes")
# Load ONNX model
sess_options = onnxruntime.SessionOptions()
sess_options.inter_op_num_threads = 1
sess_options.intra_op_num_threads = 1
try:
model = onnxruntime.InferenceSession(
model_info["path"],
sess_options=sess_options,
providers=["CPUExecutionProvider"],
)
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise gr.Error(f"Failed to load model: {str(e)}") from e
# Prepare inputs
text_array = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text_array.shape[1]], dtype=np.int64)
scales = np.array([noise_scale, length_scale, noise_w], dtype=np.float32)
# Handle speaker ID for multi-speaker models
sid = None
if config.get("num_speakers", 1) > 1:
sid = np.array([speaker_id], dtype=np.int64)
# Run inference
try:
inputs = {
"input": text_array,
"input_lengths": text_lengths,
"scales": scales,
}
if sid is not None:
inputs["sid"] = sid
audio = model.run(None, inputs)[0]
# Remove batch and channel dimensions
audio = audio.squeeze()
# Convert to int16
audio = np.clip(audio * 32767, -32768, 32767).astype(np.int16)
sample_rate = config.get("audio", {}).get("sample_rate", 22050)
return sample_rate, audio
except Exception as e:
logger.error(f"Inference failed: {e}")
raise gr.Error(f"Failed to generate speech: {str(e)}") from e
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(title="Piper TTS Demo") as interface:
gr.Markdown("""
# 🎙️ Piper TTS Demo
High-quality text-to-speech synthesis supporting Japanese and English.
This demo uses ONNX models for fast CPU inference.
""")
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
label="Select Model",
value=list(MODELS.keys())[0],
)
text_input = gr.Textbox(
label="Text to synthesize",
placeholder="Enter text here...",
lines=3,
)
# Advanced Settings without Accordion (flattened)
gr.Markdown("### Advanced Settings")
speaker_id = gr.Number(
label="Speaker ID (for multi-speaker models)",
value=0,
precision=0,
minimum=0,
maximum=10,
)
length_scale = gr.Slider(
label="Speed (Lower = faster speech)",
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
)
noise_scale = gr.Slider(
label="Expressiveness",
minimum=0.0,
maximum=1.0,
value=0.667,
step=0.01,
)
noise_w = gr.Slider(
label="Phoneme Duration Variance",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.01,
)
synthesize_btn = gr.Button("Generate Speech", variant="primary")
with gr.Column(scale=2):
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
autoplay=True,
)
gr.Markdown("""
### Tips:
- Japanese model expects hiragana/kanji text
- English model works with standard text
- Adjust speed for faster/slower speech
- Higher expressiveness = more natural variation
""")
# Examples
gr.Examples(
examples=[
["こんにちは、世界!今日はいい天気ですね。", "Japanese (Medium)"],
[
"おはようございます。本日の会議は午後3時から始まります。",
"Japanese (Medium)",
],
["Hello world! This is a text to speech demo.", "English (Test)"],
[
"Welcome to Piper TTS. Enjoy high quality speech synthesis.",
"English (Test)",
],
],
inputs=[text_input, model_dropdown],
)
# Event handlers
synthesize_btn.click(
fn=synthesize_speech,
inputs=[
text_input,
model_dropdown,
speaker_id,
length_scale,
noise_scale,
noise_w,
],
outputs=audio_output,
)
return interface
def create_minimal_interface():
"""Create a minimal fallback interface if main interface fails"""
with gr.Blocks(title="Piper TTS Demo") as interface:
gr.Markdown("# 🎙️ Piper TTS Demo")
text_input = gr.Textbox(
label="Text to synthesize",
placeholder="Enter text here...",
lines=3,
)
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
label="Select Model",
value=list(MODELS.keys())[0],
)
synthesize_btn = gr.Button("Generate Speech", variant="primary")
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
)
synthesize_btn.click(
fn=lambda text, model: synthesize_speech(text, model, 0, 1.0, 0.667, 0.8),
inputs=[text_input, model_dropdown],
outputs=audio_output,
)
return interface
# Create and launch the app
# Move interface creation inside main block to avoid context issues
interface = None
if __name__ == "__main__":
# Create and launch interface
interface = create_interface()
# Launch with minimal configuration for Hugging Face Spaces
interface.launch()
|