Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,14 +10,11 @@ import glob
|
|
| 10 |
from camera_input_live import camera_input_live
|
| 11 |
import face_recognition
|
| 12 |
|
| 13 |
-
# Set wide layout
|
| 14 |
st.set_page_config(layout="wide")
|
| 15 |
|
| 16 |
-
# Decorator for caching images
|
| 17 |
def get_image_count():
|
| 18 |
return {'count': 0}
|
| 19 |
|
| 20 |
-
# Function Definitions for Camera Feature
|
| 21 |
def save_image(image, image_count):
|
| 22 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 23 |
filename = f"captured_image_{timestamp}_{image_count['count']}.png"
|
|
@@ -31,7 +28,6 @@ def get_image_base64(image_path):
|
|
| 31 |
with open(image_path, "rb") as image_file:
|
| 32 |
return base64.b64encode(image_file.read()).decode()
|
| 33 |
|
| 34 |
-
# Function Definitions for Chord Sheet Feature
|
| 35 |
def process_line(line):
|
| 36 |
if re.search(r'\b[A-G][#b]?m?\b', line):
|
| 37 |
line = re.sub(r'\b([A-G][#b]?m?)\b', r"<img src='\1.png' style='height:20px;'>", line)
|
|
@@ -44,12 +40,9 @@ def process_sheet(sheet):
|
|
| 44 |
processed_lines.append(processed_line)
|
| 45 |
return '<br>'.join(processed_lines)
|
| 46 |
|
| 47 |
-
# Main Function
|
| 48 |
def main():
|
| 49 |
-
# Layout Configuration
|
| 50 |
col1, col2 = st.columns([2, 3])
|
| 51 |
|
| 52 |
-
# Camera Section
|
| 53 |
with col1:
|
| 54 |
st.markdown("✨ Magic Lens: Real-Time Camera Stream 🌈")
|
| 55 |
|
|
@@ -63,37 +56,29 @@ def main():
|
|
| 63 |
|
| 64 |
image = camera_input_live()
|
| 65 |
if image is not None:
|
| 66 |
-
|
| 67 |
-
rgb_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
|
| 68 |
|
| 69 |
-
# Detect faces in the image
|
| 70 |
face_locations = face_recognition.face_locations(rgb_image)
|
| 71 |
face_encodings = face_recognition.face_encodings(rgb_image, face_locations)
|
| 72 |
|
| 73 |
-
# Check if the known face image exists
|
| 74 |
if os.path.isfile("known_face.jpg"):
|
| 75 |
known_image = face_recognition.load_image_file("known_face.jpg")
|
| 76 |
known_encoding = face_recognition.face_encodings(known_image)[0]
|
| 77 |
else:
|
| 78 |
known_encoding = None
|
| 79 |
|
| 80 |
-
# Iterate over detected faces and compare with known face
|
| 81 |
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
|
| 82 |
if known_encoding is not None:
|
| 83 |
matches = face_recognition.compare_faces([known_encoding], face_encoding)
|
| 84 |
|
| 85 |
if True in matches:
|
| 86 |
-
# If a match is found, draw a green rectangle and label
|
| 87 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 255, 0), 2)
|
| 88 |
cv2.putText(rgb_image, "Known Face", (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 89 |
else:
|
| 90 |
-
# If no match, draw a red rectangle
|
| 91 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 0, 255), 2)
|
| 92 |
else:
|
| 93 |
-
# If no known face is registered, draw a blue rectangle
|
| 94 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (255, 0, 0), 2)
|
| 95 |
|
| 96 |
-
# Convert the RGB image back to BGR format for display
|
| 97 |
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
|
| 98 |
image_placeholder.image(bgr_image, channels="BGR")
|
| 99 |
|
|
@@ -116,10 +101,8 @@ def main():
|
|
| 116 |
st.sidebar.markdown("## Captured Images")
|
| 117 |
st.sidebar.markdown(sidebar_html, unsafe_allow_html=True)
|
| 118 |
|
| 119 |
-
# JavaScript Timer
|
| 120 |
st.markdown(f"<script>setInterval(function() {{ document.getElementById('timer').innerHTML = new Date().toLocaleTimeString(); }}, 1000);</script><div>Current Time: <span id='timer'></span></div>", unsafe_allow_html=True)
|
| 121 |
|
| 122 |
-
# Chord Sheet Section
|
| 123 |
with col2:
|
| 124 |
st.markdown("## 🎬 Action! Real-Time Camera Stream Highlights 📽️")
|
| 125 |
|
|
@@ -131,7 +114,6 @@ def main():
|
|
| 131 |
sheet = file.read()
|
| 132 |
st.markdown(process_sheet(sheet), unsafe_allow_html=True)
|
| 133 |
|
| 134 |
-
# Trigger a rerun only when the snapshot interval is reached
|
| 135 |
if 'last_captured' in st.session_state and time.time() - st.session_state['last_captured'] > snapshot_interval:
|
| 136 |
st.experimental_rerun()
|
| 137 |
|
|
|
|
| 10 |
from camera_input_live import camera_input_live
|
| 11 |
import face_recognition
|
| 12 |
|
|
|
|
| 13 |
st.set_page_config(layout="wide")
|
| 14 |
|
|
|
|
| 15 |
def get_image_count():
|
| 16 |
return {'count': 0}
|
| 17 |
|
|
|
|
| 18 |
def save_image(image, image_count):
|
| 19 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 20 |
filename = f"captured_image_{timestamp}_{image_count['count']}.png"
|
|
|
|
| 28 |
with open(image_path, "rb") as image_file:
|
| 29 |
return base64.b64encode(image_file.read()).decode()
|
| 30 |
|
|
|
|
| 31 |
def process_line(line):
|
| 32 |
if re.search(r'\b[A-G][#b]?m?\b', line):
|
| 33 |
line = re.sub(r'\b([A-G][#b]?m?)\b', r"<img src='\1.png' style='height:20px;'>", line)
|
|
|
|
| 40 |
processed_lines.append(processed_line)
|
| 41 |
return '<br>'.join(processed_lines)
|
| 42 |
|
|
|
|
| 43 |
def main():
|
|
|
|
| 44 |
col1, col2 = st.columns([2, 3])
|
| 45 |
|
|
|
|
| 46 |
with col1:
|
| 47 |
st.markdown("✨ Magic Lens: Real-Time Camera Stream 🌈")
|
| 48 |
|
|
|
|
| 56 |
|
| 57 |
image = camera_input_live()
|
| 58 |
if image is not None:
|
| 59 |
+
rgb_image = cv2.cvtColor(cv2.imdecode(np.frombuffer(image.getvalue(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
|
|
|
|
| 60 |
|
|
|
|
| 61 |
face_locations = face_recognition.face_locations(rgb_image)
|
| 62 |
face_encodings = face_recognition.face_encodings(rgb_image, face_locations)
|
| 63 |
|
|
|
|
| 64 |
if os.path.isfile("known_face.jpg"):
|
| 65 |
known_image = face_recognition.load_image_file("known_face.jpg")
|
| 66 |
known_encoding = face_recognition.face_encodings(known_image)[0]
|
| 67 |
else:
|
| 68 |
known_encoding = None
|
| 69 |
|
|
|
|
| 70 |
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
|
| 71 |
if known_encoding is not None:
|
| 72 |
matches = face_recognition.compare_faces([known_encoding], face_encoding)
|
| 73 |
|
| 74 |
if True in matches:
|
|
|
|
| 75 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 255, 0), 2)
|
| 76 |
cv2.putText(rgb_image, "Known Face", (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 77 |
else:
|
|
|
|
| 78 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 0, 255), 2)
|
| 79 |
else:
|
|
|
|
| 80 |
cv2.rectangle(rgb_image, (left, top), (right, bottom), (255, 0, 0), 2)
|
| 81 |
|
|
|
|
| 82 |
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
|
| 83 |
image_placeholder.image(bgr_image, channels="BGR")
|
| 84 |
|
|
|
|
| 101 |
st.sidebar.markdown("## Captured Images")
|
| 102 |
st.sidebar.markdown(sidebar_html, unsafe_allow_html=True)
|
| 103 |
|
|
|
|
| 104 |
st.markdown(f"<script>setInterval(function() {{ document.getElementById('timer').innerHTML = new Date().toLocaleTimeString(); }}, 1000);</script><div>Current Time: <span id='timer'></span></div>", unsafe_allow_html=True)
|
| 105 |
|
|
|
|
| 106 |
with col2:
|
| 107 |
st.markdown("## 🎬 Action! Real-Time Camera Stream Highlights 📽️")
|
| 108 |
|
|
|
|
| 114 |
sheet = file.read()
|
| 115 |
st.markdown(process_sheet(sheet), unsafe_allow_html=True)
|
| 116 |
|
|
|
|
| 117 |
if 'last_captured' in st.session_state and time.time() - st.session_state['last_captured'] > snapshot_interval:
|
| 118 |
st.experimental_rerun()
|
| 119 |
|