Spaces:
Sleeping
Sleeping
File size: 11,470 Bytes
b619545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os
import json
import time
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi, create_repo, upload_file
import tempfile
def create_model_repo(repo_name, private=True):
"""
Create a new model repository on Hugging Face Hub
Args:
repo_name (str): Name of the repository
private (bool): Whether the repository should be private
Returns:
tuple: (success (bool), message (str))
"""
try:
token = st.session_state.get("hf_token")
if not token:
return False, "No Hugging Face token found"
username = st.session_state.get("hf_username", "user")
full_repo_name = f"{username}/{repo_name}"
api = HfApi(token=token)
repo_url = api.create_repo(
repo_id=full_repo_name,
private=private,
exist_ok=True
)
return True, repo_url
except Exception as e:
return False, str(e)
def upload_training_config(config, repo_name):
"""
Upload a training configuration file to Hugging Face Hub
Args:
config (dict): Training configuration
repo_name (str): Repository to upload to
Returns:
tuple: (success (bool), message (str))
"""
try:
token = st.session_state.get("hf_token")
if not token:
return False, "No Hugging Face token found"
username = st.session_state.get("hf_username", "user")
repo_id = f"{username}/{repo_name}"
with tempfile.NamedTemporaryFile(delete=False, suffix='.json') as tmp:
with open(tmp.name, 'w') as f:
json.dump(config, f, indent=2)
# Upload file to repository
upload_file(
path_or_fileobj=tmp.name,
path_in_repo="training_config.json",
repo_id=repo_id,
token=token
)
# Clean up temporary file
tmp_name = tmp.name
os.unlink(tmp_name)
return True, f"Training config uploaded to {repo_id}"
except Exception as e:
return False, str(e)
def setup_training_script(repo_name, config):
"""
Generate and upload a training script to the repository
Args:
repo_name (str): Repository name
config (dict): Training configuration
Returns:
tuple: (success (bool), message (str))
"""
# Create a training script using transformers Trainer with 4-bit quantization for CPU
script = """
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel
import json
import os
import torch
from huggingface_hub import login
import bitsandbytes as bnb
# Load configuration
with open("training_config.json", "r") as f:
config = json.load(f)
# Login to Hugging Face
login(token=os.environ.get("HF_TOKEN"))
# Load dataset
print("Loading dataset:", config["dataset_name"])
dataset = load_dataset(config["dataset_name"])
# Prepare train/validation split if not already split
if "train" in dataset and "validation" not in dataset:
dataset = dataset["train"].train_test_split(test_size=0.1)
elif "train" not in dataset:
# If dataset has no train split but has text column, use that
if "text" in dataset:
dataset = dataset.train_test_split(test_size=0.1)
else:
# Try to find what splits are available
print("Available splits:", list(dataset.keys()))
# Default to using the first split and splitting it
first_split = list(dataset.keys())[0]
dataset = dataset[first_split].train_test_split(test_size=0.1)
print("Dataset splits:", list(dataset.keys()))
# Print dataset sample
print("Dataset sample:", dataset["train"][0])
# Load tokenizer
print("Loading tokenizer for model:", config["model_name_or_path"])
tokenizer = AutoTokenizer.from_pretrained(config["model_name_or_path"])
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with 4-bit quantization for CPU efficiency
print("Loading model with quantization...")
model = AutoModelForCausalLM.from_pretrained(
config["model_name_or_path"],
load_in_4bit=True, # Enable 4-bit quantization
device_map="auto",
quantization_config=bnb.nn.modules.Linear4bit.compute_quant_config(),
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
use_cache=False, # Required for gradient checkpointing
)
# Enable gradient checkpointing for memory efficiency
model.gradient_checkpointing_enable()
# Print memory usage before PEFT
print(f"Model loaded. Memory usage: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB")
# Prepare model for training with LoRA
print("Setting up LoRA with rank:", config["peft_config"]["r"])
peft_config = LoraConfig(
r=config["peft_config"]["r"],
lora_alpha=config["peft_config"]["lora_alpha"],
lora_dropout=config["peft_config"]["lora_dropout"],
bias=config["peft_config"]["bias"],
task_type=config["peft_config"]["task_type"],
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
)
# Prepare model - use 8-bit Adam for memory efficiency
print("Preparing model for training...")
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Setup training arguments with CPU optimizations
print("Setting up training arguments...")
training_args = TrainingArguments(
output_dir=config["output_dir"],
num_train_epochs=config["num_train_epochs"],
per_device_train_batch_size=config["per_device_train_batch_size"],
per_device_eval_batch_size=max(1, config["per_device_train_batch_size"] // 2),
learning_rate=config["learning_rate"],
weight_decay=config["weight_decay"],
save_strategy=config["save_strategy"],
evaluation_strategy=config["evaluation_strategy"],
fp16=config["fp16"] and torch.cuda.is_available(),
optim=config["optim"],
logging_steps=config["logging_steps"],
gradient_accumulation_steps=config["gradient_accumulation_steps"],
max_steps=config["max_steps"] if config["max_steps"] > 0 else None,
warmup_steps=config["warmup_steps"],
max_grad_norm=config["max_grad_norm"],
push_to_hub=True,
hub_token=os.environ.get("HF_TOKEN"),
dataloader_num_workers=0, # Lower CPU usage for smaller machines
use_cpu=not torch.cuda.is_available(), # Force CPU if no GPU
lr_scheduler_type="cosine", # Better LR scheduling for small datasets
report_to=["tensorboard"], # Enable tensorboard logging
)
# Define data collator
print("Setting up data collator...")
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Tokenize dataset
print("Tokenizing dataset...")
def tokenize_function(examples):
# Use a smaller max length on CPU to save memory
max_length = 256 if not torch.cuda.is_available() else 512
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
)
# Show progress while tokenizing
print("Mapping tokenization function...")
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
batch_size=8, # Smaller batch size for CPU
remove_columns=dataset["train"].column_names, # Remove original columns after tokenizing
desc="Tokenizing dataset",
)
# Initialize trainer
print("Initializing trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["validation"],
data_collator=data_collator,
)
# Start training
print("Starting training...")
try:
trainer.train()
# Save model and tokenizer
print("Saving model...")
trainer.save_model()
print("Training completed successfully!")
except Exception as e:
print(f"Error during training: {str(e)}")
# Save checkpoint even if error occurred
try:
trainer.save_model("./checkpoint-error")
print("Saved checkpoint before error")
except:
print("Could not save checkpoint")
"""
try:
token = st.session_state.get("hf_token")
if not token:
return False, "No Hugging Face token found"
username = st.session_state.get("hf_username", "user")
repo_id = f"{username}/{repo_name}"
with tempfile.NamedTemporaryFile(delete=False, suffix='.py') as tmp:
with open(tmp.name, 'w') as f:
f.write(script)
# Upload file to repository
upload_file(
path_or_fileobj=tmp.name,
path_in_repo="train.py",
repo_id=repo_id,
token=token
)
# Clean up temporary file
tmp_name = tmp.name
# Also create and upload a CPU-optimized requirements file
requirements = """
transformers>=4.35.0
peft>=0.7.0
bitsandbytes>=0.40.0
datasets>=2.10.0
torch>=2.0.0
tensorboard>=2.13.0
accelerate>=0.20.0
huggingface_hub>=0.15.0
scipy>=1.10.0
"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.txt') as tmp:
with open(tmp.name, 'w') as f:
f.write(requirements)
# Upload file to repository
upload_file(
path_or_fileobj=tmp.name,
path_in_repo="requirements.txt",
repo_id=repo_id,
token=token
)
# Clean up temporary file
tmp_name = tmp.name
os.unlink(tmp_name)
return True, f"Training script and requirements uploaded to {repo_id}"
except Exception as e:
return False, str(e)
def simulate_training_progress():
"""
Simulate training progress for demonstration purposes
"""
if "training_progress" not in st.session_state:
st.session_state.training_progress = {
"started": time.time(),
"current_epoch": 0,
"total_epochs": 3,
"loss": 2.5,
"learning_rate": 2e-5,
"progress": 0.0,
"status": "running"
}
# Update progress based on elapsed time (simulated)
elapsed = time.time() - st.session_state.training_progress["started"]
epoch_duration = 60 # Simulate each epoch taking 60 seconds
# Calculate current progress
total_duration = epoch_duration * st.session_state.training_progress["total_epochs"]
progress = min(elapsed / total_duration, 1.0)
# Calculate current epoch
current_epoch = min(
int(progress * st.session_state.training_progress["total_epochs"]),
st.session_state.training_progress["total_epochs"]
)
# Simulate decreasing loss
loss = max(2.5 - (progress * 2.0), 0.5)
# Update session state
st.session_state.training_progress.update({
"progress": progress,
"current_epoch": current_epoch,
"loss": loss,
"status": "completed" if progress >= 1.0 else "running"
})
return st.session_state.training_progress |