Spaces:
Sleeping
Sleeping
File size: 7,939 Bytes
b619545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
import time
import json
import pandas as pd
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from utils.ui import set_page_style, display_metric
from utils.auth import check_hf_token
from utils.training import simulate_training_progress
# Set page configuration
st.set_page_config(
page_title="Training Monitor - Gemma Fine-tuning",
page_icon="π€",
layout="wide"
)
# Apply custom styling
set_page_style()
# Sidebar for authentication
with st.sidebar:
st.title("π€ Gemma Fine-tuning")
st.image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gemma-banner.png",
use_column_width=True)
# Authentication section
st.subheader("π Authentication")
hf_token = st.text_input("Hugging Face API Token", type="password",
help="Enter your Hugging Face write token to enable model fine-tuning")
auth_status = check_hf_token(hf_token) if hf_token else False
if auth_status:
st.success("Authenticated successfully!")
elif hf_token:
st.error("Invalid token. Please check and try again.")
st.divider()
st.caption("A simple UI for fine-tuning Gemma models")
# Main content
st.title("π Training Monitor")
if not hf_token or not auth_status:
st.warning("Please authenticate with your Hugging Face token in the sidebar first")
st.stop()
# Check if training was started
if "model_repo" not in st.session_state:
st.warning("No active training jobs found")
st.page_link("pages/02_Model_Configuration.py", label="Go to Model Configuration", icon="βοΈ")
# For testing purposes, allow manual entry
manual_repo = st.text_input("Or enter model repository name manually:")
if manual_repo:
st.session_state["model_repo"] = manual_repo
st.session_state["model_version"] = "google/gemma-2b" # Default
else:
st.stop()
# Training information
st.header("Training Information")
col1, col2 = st.columns(2)
with col1:
st.subheader("Model Repository")
st.info(st.session_state["model_repo"])
st.subheader("Base Model")
st.info(st.session_state.get("model_version", "google/gemma-2b"))
with col2:
# For demo purposes, create a button to start simulated training
if "training_started" not in st.session_state:
st.subheader("Start Training")
if st.button("Launch Training Job", type="primary"):
st.session_state["training_started"] = True
st.experimental_rerun()
else:
st.subheader("Status")
st.success("Training in Progress")
# Simulate a cancel button
if st.button("Cancel Training Job", type="secondary"):
st.warning("This is a simulation - in a real environment, this would cancel the training job")
# If training has started, show the progress
if st.session_state.get("training_started", False):
st.header("Training Progress")
# Create a placeholder for the progress bar
progress_bar = st.progress(0)
# Create placeholder metrics
col1, col2, col3, col4 = st.columns(4)
# Get training progress (simulated for demo)
progress_data = simulate_training_progress()
# Update progress bar
progress_bar.progress(progress_data["progress"])
# Update metrics
with col1:
display_metric("Epoch", f"{progress_data['current_epoch'] + 1}/{progress_data['total_epochs']}")
with col2:
display_metric("Loss", f"{progress_data['loss']:.4f}")
with col3:
display_metric("Learning Rate", f"{progress_data['learning_rate']:.1e}")
with col4:
status_text = "Complete" if progress_data["status"] == "completed" else "Running"
display_metric("Status", status_text)
# Create training history visualization
st.subheader("Training Metrics")
# Simulate training history data
if "training_history" not in st.session_state:
st.session_state.training_history = []
# Add current data point to history if not completed
if progress_data["status"] != "completed" or len(st.session_state.training_history) == 0:
st.session_state.training_history.append({
"epoch": progress_data["current_epoch"],
"loss": progress_data["loss"],
"learning_rate": progress_data["learning_rate"],
"timestamp": time.time()
})
# Convert history to DataFrame
history_df = pd.DataFrame(st.session_state.training_history)
if not history_df.empty and len(history_df) > 1:
# Create tabs for different visualizations
loss_tab, lr_tab = st.tabs(["Loss Curve", "Learning Rate"])
with loss_tab:
# Create a Plotly figure for the loss curve
fig = go.Figure()
fig.add_trace(go.Scatter(
x=history_df["epoch"],
y=history_df["loss"],
mode='lines+markers',
name='Training Loss',
line=dict(color='#FF4B4B', width=3)
))
fig.update_layout(
title="Training Loss Over Time",
xaxis_title="Epoch",
yaxis_title="Loss",
template="plotly_white",
height=400
)
st.plotly_chart(fig, use_container_width=True)
with lr_tab:
# Create a Plotly figure for the learning rate
fig = go.Figure()
fig.add_trace(go.Scatter(
x=history_df["epoch"],
y=history_df["learning_rate"],
mode='lines+markers',
name='Learning Rate',
line=dict(color='#0068C9', width=3)
))
fig.update_layout(
title="Learning Rate Schedule",
xaxis_title="Epoch",
yaxis_title="Learning Rate",
template="plotly_white",
height=400
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("Training metrics will appear here once training progresses")
# Training logs
st.subheader("Training Logs")
# Simulate logs
log_lines = [
f"[{pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')}] Initialized training job",
f"[{pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')}] Loading model: {st.session_state.get('model_version', 'google/gemma-2b')}",
f"[{pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')}] Preparing LoRA configuration"
]
# Add epoch logs based on progress
current_epoch = progress_data["current_epoch"]
for epoch in range(min(current_epoch + 1, progress_data["total_epochs"])):
timestamp = pd.Timestamp.now() - pd.Timedelta(seconds=(current_epoch - epoch) * 60)
log_lines.append(f"[{timestamp.strftime('%Y-%m-%d %H:%M:%S')}] Epoch {epoch+1}/{progress_data['total_epochs']} started")
if epoch < current_epoch:
# For completed epochs, add completion log
timestamp = pd.Timestamp.now() - pd.Timedelta(seconds=(current_epoch - epoch - 0.5) * 60)
sim_loss = max(2.5 - (epoch * 0.5), 0.5)
log_lines.append(f"[{timestamp.strftime('%Y-%m-%d %H:%M:%S')}] Epoch {epoch+1} completed: loss={sim_loss:.4f}")
# Display logs in a scrollable area
st.code("\n".join(log_lines))
# Next steps (only show when training is complete)
if progress_data["status"] == "completed":
st.success("Training completed successfully!")
st.page_link("pages/04_Evaluation.py", label="Next: Evaluate Model", icon="π")
else:
# Auto-refresh for monitoring
st.empty()
time.sleep(2) # Wait for 2 seconds
st.experimental_rerun() |