import numpy as np def colorize_label_map(label_map): unique_labels = np.unique(label_map) n = unique_labels.max() + 1 # Random colormap: shape (n_labels, 3), dtype=uint8 np.random.seed(42) # for reproducibility colormap = np.random.randint(0, 255, size=(n, 3), dtype=np.uint8, ) colormap[0] = [0, 0, 0] # make background black if label 0 # Create color image h, w = label_map.shape color_image = np.zeros((h, w, 3), dtype=np.uint8) for label in unique_labels: color_image[label_map == label] = colormap[label] return color_image def colorize_mask_2d(mask_prediction): empty_channel = np.zeros_like(mask_prediction[:,:,0]) color_mask = np.stack([mask_prediction[:,:,1], empty_channel, mask_prediction[:,:,0]], axis=-1) * 255 return color_mask