import numpy as np import mlflow from mwm.components.metrics import * class MetricsLogger2Channel: def __init__(self): self.epoch_loss = 0.0 self.epoch_loss_val = 0.0 self.epoch_iou_ch0 = 0.0 self.epoch_iou_ch1 = 0.0 def update_sum(self, loss, preds, masks): self.epoch_loss += loss.item() self.epoch_iou_ch0 += np.sum(iou_list(preds[:,0,:,:], masks[:,0,:,:])) self.epoch_iou_ch1 += np.sum(iou_list(preds[:,1,:,:], masks[:,1,:,:])) def update_mean(self, num_batch, num_samples): self.epoch_loss /= num_batch self.epoch_iou_ch0 /= num_samples self.epoch_iou_ch1 /= num_samples def update_sum_val(self, loss): self.epoch_loss_val += loss.item() def update_mean_val(self, num_batch): self.epoch_loss_val /= num_batch def log_metrics_mlflow(self, epoch): mlflow.log_metric("loss_train", self.epoch_loss, step=epoch) mlflow.log_metric("loss_val", self.epoch_loss_val, step=epoch) mlflow.log_metric("iou_ch0", self.epoch_iou_ch0, step=epoch) mlflow.log_metric("iou_ch1", self.epoch_iou_ch1, step=epoch) print(f"Epoch {epoch}, \ Loss: {self.epoch_loss:.4f}, \ Val Loss: {self.epoch_loss_val:.4f}, \ Avg IoU Ch0: {self.epoch_iou_ch0:.4f}, \ Avg IoU Ch1: {self.epoch_iou_ch1:.4f}") self.reset() def reset(self): self.epoch_loss = 0.0 self.epoch_loss_val = 0.0 self.epoch_iou_ch0 = 0.0 self.epoch_iou_ch1 = 0.0