Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import os | |
| import re | |
| import tempfile | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import cv2 | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from loguru import logger | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer | |
| import gc | |
| model_id = os.getenv("MODEL_ID", "google/medgemma-4b-it") | |
| # Memory optimization settings | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cudnn.deterministic = True | |
| # Initialize processor and model with memory optimizations | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| # Load model with aggressive memory optimizations | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| token=os.environ.get("HF_TOKEN", "YOUR_HF_TOKEN"), | |
| # Memory optimization parameters | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| # Use 8-bit quantization if available | |
| load_in_8bit=True if torch.cuda.is_available() else False, | |
| # Alternative: use 4-bit quantization for even more memory savings | |
| # load_in_4bit=True, | |
| # bnb_4bit_compute_dtype=torch.float16, | |
| # bnb_4bit_use_double_quant=True, | |
| # bnb_4bit_quant_type="nf4" | |
| ) | |
| # Enable gradient checkpointing to save memory during inference | |
| if hasattr(model, 'gradient_checkpointing_enable'): | |
| model.gradient_checkpointing_enable() | |
| MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "3")) # Reduced from 5 to 3 | |
| def cleanup_memory(): | |
| """Aggressive memory cleanup""" | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.synchronize() | |
| def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for path in paths: | |
| if path.endswith(".mp4"): | |
| video_count += 1 | |
| else: | |
| image_count += 1 | |
| return image_count, video_count | |
| def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for item in history: | |
| if item["role"] != "user" or isinstance(item["content"], str): | |
| continue | |
| if item["content"][0].endswith(".mp4"): | |
| video_count += 1 | |
| else: | |
| image_count += 1 | |
| return image_count, video_count | |
| def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
| new_image_count, new_video_count = count_files_in_new_message(message["files"]) | |
| history_image_count, history_video_count = count_files_in_history(history) | |
| image_count = history_image_count + new_image_count | |
| video_count = history_video_count + new_video_count | |
| if video_count > 1: | |
| gr.Warning("Only one video is supported.") | |
| return False | |
| if video_count == 1: | |
| if image_count > 0: | |
| gr.Warning("Mixing images and videos is not allowed.") | |
| return False | |
| if "<image>" in message["text"]: | |
| gr.Warning("Using <image> tags with video files is not supported.") | |
| return False | |
| if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
| gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
| return False | |
| if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count: | |
| gr.Warning("The number of <image> tags in the text does not match the number of images.") | |
| return False | |
| return True | |
| def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
| vidcap = cv2.VideoCapture(video_path) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| # Reduce max frames for memory efficiency | |
| max_frames = min(MAX_NUM_IMAGES, 8) | |
| frame_interval = max(total_frames // max_frames, 1) | |
| frames: list[tuple[Image.Image, float]] = [] | |
| for i in range(0, min(total_frames, max_frames * frame_interval), frame_interval): | |
| if len(frames) >= max_frames: | |
| break | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Resize image to reduce memory usage | |
| pil_image = Image.fromarray(image) | |
| # Resize if too large | |
| max_size = 512 | |
| if max(pil_image.size) > max_size: | |
| pil_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def process_video(video_path: str) -> list[dict]: | |
| content = [] | |
| frames = downsample_video(video_path) | |
| for frame in frames: | |
| pil_image, timestamp = frame | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
| pil_image.save(temp_file.name, optimize=True) | |
| content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| content.append({"type": "image", "url": temp_file.name}) | |
| logger.debug(f"{content=}") | |
| return content | |
| def process_interleaved_images(message: dict) -> list[dict]: | |
| logger.debug(f"{message['files']=}") | |
| parts = re.split(r"(<image>)", message["text"]) | |
| logger.debug(f"{parts=}") | |
| content = [] | |
| image_index = 0 | |
| for part in parts: | |
| logger.debug(f"{part=}") | |
| if part == "<image>": | |
| # Resize images before processing | |
| img = Image.open(message["files"][image_index]) | |
| max_size = 512 | |
| if max(img.size) > max_size: | |
| img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) | |
| # Save resized image | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
| img.save(temp_file.name, optimize=True, quality=85) | |
| content.append({"type": "image", "url": temp_file.name}) | |
| else: | |
| content.append({"type": "image", "url": message["files"][image_index]}) | |
| logger.debug(f"file: {message['files'][image_index]}") | |
| image_index += 1 | |
| elif part.strip(): | |
| content.append({"type": "text", "text": part.strip()}) | |
| elif isinstance(part, str) and part != "<image>": | |
| content.append({"type": "text", "text": part}) | |
| logger.debug(f"{content=}") | |
| return content | |
| def process_new_user_message(message: dict) -> list[dict]: | |
| if not message["files"]: | |
| return [{"type": "text", "text": message["text"]}] | |
| if message["files"][0].endswith(".mp4"): | |
| return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])] | |
| if "<image>" in message["text"]: | |
| return process_interleaved_images(message) | |
| # Process regular images with resizing | |
| processed_images = [] | |
| for path in message["files"]: | |
| img = Image.open(path) | |
| max_size = 512 | |
| if max(img.size) > max_size: | |
| img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
| img.save(temp_file.name, optimize=True, quality=85) | |
| processed_images.append({"type": "image", "url": temp_file.name}) | |
| else: | |
| processed_images.append({"type": "image", "url": path}) | |
| return [ | |
| {"type": "text", "text": message["text"]}, | |
| *processed_images, | |
| ] | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| current_user_content: list[dict] = [] | |
| # Limit history to prevent memory overflow | |
| recent_history = history[-10:] if len(history) > 10 else history | |
| for item in recent_history: | |
| if item["role"] == "assistant": | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| current_user_content = [] | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| current_user_content.append({"type": "text", "text": content}) | |
| else: | |
| current_user_content.append({"type": "image", "url": content[0]}) | |
| return messages | |
| def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 1024) -> Iterator[str]: | |
| # Cleanup memory before processing | |
| cleanup_memory() | |
| if not validate_media_constraints(message, history): | |
| yield "" | |
| return | |
| try: | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
| messages.extend(process_history(history)) | |
| messages.append({"role": "user", "content": process_new_user_message(message)}) | |
| # Apply chat template with memory optimization | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device=model.device) | |
| # Reduce max_new_tokens to save memory | |
| max_new_tokens = min(max_new_tokens, 512) | |
| streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| temperature=0.8, # Slightly reduced for more focused responses | |
| top_p=0.9, # Reduced for efficiency | |
| top_k=50, # Reduced for efficiency | |
| min_p=0.05, # Added for better token filtering | |
| do_sample=True, | |
| pad_token_id=processor.tokenizer.eos_token_id, | |
| use_cache=True, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| output = "" | |
| for delta in streamer: | |
| output += delta | |
| yield output | |
| except Exception as e: | |
| logger.error(f"Error during generation: {e}") | |
| yield f"Error: {str(e)}" | |
| finally: | |
| # Cleanup after generation | |
| cleanup_memory() | |
| # Streamlined CSS | |
| custom_css = """ | |
| .gr-chatbot { | |
| background-color: #ffffff; | |
| border-radius: 8px; | |
| border: 1px solid #e5e7eb; | |
| } | |
| .gr-textbox textarea { | |
| min-height: 100px; | |
| border-radius: 8px; | |
| padding: 12px; | |
| } | |
| .gr-button { | |
| background-color: #4f46e5 !important; | |
| color: white !important; | |
| border-radius: 6px !important; | |
| padding: 8px 16px !important; | |
| } | |
| .gr-interface { | |
| max-width: 800px; | |
| margin: 0 auto; | |
| padding: 16px; | |
| } | |
| """ | |
| DESCRIPTION = """\ | |
| ## Medical Vision-Language Assistant (Memory Optimized) | |
| This AI assistant analyzes medical images and videos with memory efficiency optimizations. | |
| **Features:** | |
| - Medical image analysis (max 512px resolution for efficiency) | |
| - Video frame processing (limited frames) | |
| - Reduced memory footprint | |
| - Optimized for resource-constrained environments | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=run, | |
| type="messages", | |
| chatbot=gr.Chatbot( | |
| type="messages", | |
| scale=1, | |
| allow_tags=["image"], | |
| bubble_full_width=False, | |
| height=400, # Fixed height to save memory | |
| ), | |
| textbox=gr.MultimodalTextbox( | |
| file_types=["image", ".mp4"], | |
| file_count="multiple", | |
| autofocus=True, | |
| placeholder="Upload images/video and ask questions...", | |
| ), | |
| multimodal=True, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| label="System Prompt", | |
| value="You are a medical AI assistant. Provide concise, accurate analysis.", | |
| lines=2, | |
| ), | |
| gr.Slider( | |
| label="Response Length", | |
| minimum=50, | |
| maximum=512, | |
| step=10, | |
| value=256, | |
| info="Shorter responses use less memory" | |
| ), | |
| ], | |
| stop_btn=None, | |
| title="Medical Vision Assistant", | |
| description=DESCRIPTION, | |
| cache_examples=False, | |
| css=custom_css, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=True) |