ashishninehertz's picture
dsa
8bfed10
#!/usr/bin/env python
import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
import gc
model_id = os.getenv("MODEL_ID", "google/medgemma-4b-it")
# Memory optimization settings
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Initialize processor and model with memory optimizations
processor = AutoProcessor.from_pretrained(model_id)
# Load model with aggressive memory optimizations
model = AutoModelForImageTextToText.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
token=os.environ.get("HF_TOKEN", "YOUR_HF_TOKEN"),
# Memory optimization parameters
low_cpu_mem_usage=True,
trust_remote_code=True,
# Use 8-bit quantization if available
load_in_8bit=True if torch.cuda.is_available() else False,
# Alternative: use 4-bit quantization for even more memory savings
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.float16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4"
)
# Enable gradient checkpointing to save memory during inference
if hasattr(model, 'gradient_checkpointing_enable'):
model.gradient_checkpointing_enable()
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "3")) # Reduced from 5 to 3
def cleanup_memory():
"""Aggressive memory cleanup"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if item["content"][0].endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
new_image_count, new_video_count = count_files_in_new_message(message["files"])
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and videos is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("Using <image> tags with video files is not supported.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
gr.Warning("The number of <image> tags in the text does not match the number of images.")
return False
return True
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
# Reduce max frames for memory efficiency
max_frames = min(MAX_NUM_IMAGES, 8)
frame_interval = max(total_frames // max_frames, 1)
frames: list[tuple[Image.Image, float]] = []
for i in range(0, min(total_frames, max_frames * frame_interval), frame_interval):
if len(frames) >= max_frames:
break
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize image to reduce memory usage
pil_image = Image.fromarray(image)
# Resize if too large
max_size = 512
if max(pil_image.size) > max_size:
pil_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_video(video_path: str) -> list[dict]:
content = []
frames = downsample_video(video_path)
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name, optimize=True)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
logger.debug(f"{content=}")
return content
def process_interleaved_images(message: dict) -> list[dict]:
logger.debug(f"{message['files']=}")
parts = re.split(r"(<image>)", message["text"])
logger.debug(f"{parts=}")
content = []
image_index = 0
for part in parts:
logger.debug(f"{part=}")
if part == "<image>":
# Resize images before processing
img = Image.open(message["files"][image_index])
max_size = 512
if max(img.size) > max_size:
img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Save resized image
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
img.save(temp_file.name, optimize=True, quality=85)
content.append({"type": "image", "url": temp_file.name})
else:
content.append({"type": "image", "url": message["files"][image_index]})
logger.debug(f"file: {message['files'][image_index]}")
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
logger.debug(f"{content=}")
return content
def process_new_user_message(message: dict) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
if message["files"][0].endswith(".mp4"):
return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]
if "<image>" in message["text"]:
return process_interleaved_images(message)
# Process regular images with resizing
processed_images = []
for path in message["files"]:
img = Image.open(path)
max_size = 512
if max(img.size) > max_size:
img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
img.save(temp_file.name, optimize=True, quality=85)
processed_images.append({"type": "image", "url": temp_file.name})
else:
processed_images.append({"type": "image", "url": path})
return [
{"type": "text", "text": message["text"]},
*processed_images,
]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
# Limit history to prevent memory overflow
recent_history = history[-10:] if len(history) > 10 else history
for item in recent_history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
return messages
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 1024) -> Iterator[str]:
# Cleanup memory before processing
cleanup_memory()
if not validate_media_constraints(message, history):
yield ""
return
try:
messages = []
if system_prompt:
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
# Apply chat template with memory optimization
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device)
# Reduce max_new_tokens to save memory
max_new_tokens = min(max_new_tokens, 512)
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
max_new_tokens=max_new_tokens,
streamer=streamer,
temperature=0.8, # Slightly reduced for more focused responses
top_p=0.9, # Reduced for efficiency
top_k=50, # Reduced for efficiency
min_p=0.05, # Added for better token filtering
do_sample=True,
pad_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
except Exception as e:
logger.error(f"Error during generation: {e}")
yield f"Error: {str(e)}"
finally:
# Cleanup after generation
cleanup_memory()
# Streamlined CSS
custom_css = """
.gr-chatbot {
background-color: #ffffff;
border-radius: 8px;
border: 1px solid #e5e7eb;
}
.gr-textbox textarea {
min-height: 100px;
border-radius: 8px;
padding: 12px;
}
.gr-button {
background-color: #4f46e5 !important;
color: white !important;
border-radius: 6px !important;
padding: 8px 16px !important;
}
.gr-interface {
max-width: 800px;
margin: 0 auto;
padding: 16px;
}
"""
DESCRIPTION = """\
## Medical Vision-Language Assistant (Memory Optimized)
This AI assistant analyzes medical images and videos with memory efficiency optimizations.
**Features:**
- Medical image analysis (max 512px resolution for efficiency)
- Video frame processing (limited frames)
- Reduced memory footprint
- Optimized for resource-constrained environments
"""
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(
type="messages",
scale=1,
allow_tags=["image"],
bubble_full_width=False,
height=400, # Fixed height to save memory
),
textbox=gr.MultimodalTextbox(
file_types=["image", ".mp4"],
file_count="multiple",
autofocus=True,
placeholder="Upload images/video and ask questions...",
),
multimodal=True,
additional_inputs=[
gr.Textbox(
label="System Prompt",
value="You are a medical AI assistant. Provide concise, accurate analysis.",
lines=2,
),
gr.Slider(
label="Response Length",
minimum=50,
maximum=512,
step=10,
value=256,
info="Shorter responses use less memory"
),
],
stop_btn=None,
title="Medical Vision Assistant",
description=DESCRIPTION,
cache_examples=False,
css=custom_css,
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True)