File size: 11,328 Bytes
bbf0437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb6ba7
 
 
8bfed10
fcb6ba7
bbf0437
8bfed10
fcb6ba7
 
 
 
 
 
 
 
 
bbf0437
 
fcb6ba7
bbf0437
 
 
 
 
 
 
 
 
 
 
fcb6ba7
bbf0437
 
 
 
 
 
 
fcb6ba7
 
 
 
 
 
 
bbf0437
 
 
 
fcb6ba7
bbf0437
 
 
fcb6ba7
bbf0437
 
 
fcb6ba7
8bfed10
fcb6ba7
bbf0437
8bfed10
 
bbf0437
fcb6ba7
bbf0437
 
 
 
 
 
 
fcb6ba7
bbf0437
 
 
fcb6ba7
bbf0437
 
fcb6ba7
 
bbf0437
8bfed10
fcb6ba7
bbf0437
fcb6ba7
bbf0437
 
fcb6ba7
 
bbf0437
fcb6ba7
 
bbf0437
 
 
fcb6ba7
bbf0437
8bfed10
fcb6ba7
 
bbf0437
 
fcb6ba7
 
 
bbf0437
 
fcb6ba7
bbf0437
 
 
 
 
 
 
 
 
 
 
8bfed10
bbf0437
 
fcb6ba7
bbf0437
fcb6ba7
8bfed10
bbf0437
 
 
 
 
 
 
 
 
 
 
 
 
 
8bfed10
fcb6ba7
 
 
 
8bfed10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf0437
8bfed10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb6ba7
8bfed10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb6ba7
 
 
8bfed10
 
 
 
 
 
fcb6ba7
 
 
8bfed10
fcb6ba7
8bfed10
 
 
 
 
 
 
 
 
 
 
 
 
fcb6ba7
 
 
8bfed10
fcb6ba7
8bfed10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb6ba7
bbf0437
 
 
8bfed10
bbf0437
8bfed10
 
bbf0437
 
8bfed10
 
 
 
bbf0437
 
 
 
 
 
 
fcb6ba7
 
bbf0437
8bfed10
 
 
 
 
bbf0437
 
 
 
 
8bfed10
bbf0437
 
 
 
 
8bfed10
 
bbf0437
 
 
8bfed10
 
bbf0437
8bfed10
 
bbf0437
 
fcb6ba7
8bfed10
bbf0437
8bfed10
 
 
 
 
fcb6ba7
bbf0437
8bfed10
 
 
 
 
bbf0437
 
 
8bfed10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#!/usr/bin/env python

import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer

model_id = os.getenv("MODEL_ID", "google/medgemma-4b-it")
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
    model_id, device_map="auto", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,token=os.environ.get("HF_TOKEN", "YOUR_HF_TOKEN")
)

MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))

def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count

def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if item["content"][0].endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count

def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    new_image_count, new_video_count = count_files_in_new_message(message["files"])
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count
    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
        gr.Warning("The number of <image> tags in the text does not match the number of images.")
        return False
    return True

def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

    frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
    frames: list[tuple[Image.Image, float]] = []

    for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
        if len(frames) >= MAX_NUM_IMAGES:
            break

        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))

    vidcap.release()
    return frames

def process_video(video_path: str) -> list[dict]:
    content = []
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    logger.debug(f"{content=}")
    return content

def process_interleaved_images(message: dict) -> list[dict]:
    logger.debug(f"{message['files']=}")
    parts = re.split(r"(<image>)", message["text"])
    logger.debug(f"{parts=}")

    content = []
    image_index = 0
    for part in parts:
        logger.debug(f"{part=}")
        if part == "<image>":
            content.append({"type": "image", "url": message["files"][image_index]})
            logger.debug(f"file: {message['files'][image_index]}")
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        elif isinstance(part, str) and part != "<image>":
            content.append({"type": "text", "text": part})
    logger.debug(f"{content=}")
    return content

def process_new_user_message(message: dict) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]

    if message["files"][0].endswith(".mp4"):
        return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]

    if "<image>" in message["text"]:
        return process_interleaved_images(message)

    return [
        {"type": "text", "text": message["text"]},
        *[{"type": "image", "url": path} for path in message["files"]],
    ]

def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                current_user_content.append({"type": "image", "url": content[0]})
    return messages

@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048) -> Iterator[str]:
    if not validate_media_constraints(message, history):
        yield ""
        return

    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=model.device)

    streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        inputs,
        max_new_tokens=max_new_tokens,
        streamer=streamer,
        temperature=1.0,
        top_p=0.95,
        top_k=64,
        min_p=0.0,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output

# Custom CSS for the UI
custom_css = """
:root {
    --primary: #4f46e5;
    --primary-dark: #4338ca;
    --text: #1f2937;
    --background: #f9fafb;
    --chat-bg: #ffffff;
    --user-bubble: #e0e7ff;
    --bot-bubble: #f3f4f6;
    --border: #e5e7eb;
}

.dark {
    --primary: #6366f1;
    --primary-dark: #4f46e5;
    --text: #f3f4f6;
    --background: #111827;
    --chat-bg: #1f2937;
    --user-bubble: #4338ca;
    --bot-bubble: #374151;
    --border: #4b5563;
}

body {
    font-family: 'Inter', sans-serif;
}

.gr-chatbot {
    background-color: var(--chat-bg);
    border-radius: 12px;
    border: 1px solid var(--border);
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}

.gr-chat-message {
    padding: 16px 20px;
    border-radius: 12px;
    margin: 8px 0;
    max-width: 80%;
}

.gr-chat-message-user {
    background-color: var(--user-bubble);
    margin-left: auto;
    border-bottom-right-radius: 4px;
}

.gr-chat-message-bot {
    background-color: var(--bot-bubble);
    margin-right: auto;
    border-bottom-left-radius: 4px;
}

.gr-textbox textarea {
    min-height: 120px;
    border-radius: 12px;
    padding: 16px;
    background-color: var(--background);
    color: var(--text);
    border: 1px solid var(--border);
}

.gr-button {
    background-color: var(--primary) !important;
    color: white !important;
    border-radius: 8px !important;
    padding: 10px 20px !important;
    font-weight: 500 !important;
    transition: all 0.2s !important;
}

.gr-button:hover {
    background-color: var(--primary-dark) !important;
    transform: translateY(-1px) !important;
}

.gr-button:active {
    transform: translateY(0) !important;
}

.gr-interface {
    max-width: 900px;
    margin: 0 auto;
    padding: 24px;
}

.gr-header {
    text-align: center;
    margin-bottom: 24px;
}

.gr-header h1 {
    font-size: 2.5rem;
    font-weight: 700;
    color: var(--primary);
    margin-bottom: 8px;
}

.gr-header p {
    color: var(--text);
    opacity: 0.8;
    font-size: 1.1rem;
}

.gr-image-preview {
    border-radius: 8px;
    max-width: 100%;
    max-height: 300px;
    object-fit: contain;
}

.gr-video-preview {
    border-radius: 8px;
    max-width: 100%;
    max-height: 300px;
}
"""

DESCRIPTION = """\
## Medical Vision-Language Assistant

This advanced AI assistant can understand and analyze medical images, videos, and text. 
Upload images or a video along with your questions to get insights.

**Features:**
- Analyze medical images (X-rays, CT scans, etc.)
- Process video frames from medical videos
- Interleave images with text questions
- Customize system behavior with prompts
"""

demo = gr.ChatInterface(
    fn=run,
    type="messages",
    chatbot=gr.Chatbot(
        type="messages", 
        scale=1, 
        allow_tags=["image"],
        bubble_full_width=False,
        avatar_images=(
            "assets/user.png",  # User avatar
            "assets/doctor.png"  # Bot avatar (replace with your own)
        ),
        render=False  # We'll handle rendering in CSS
    ),
    textbox=gr.MultimodalTextbox(
        file_types=["image", ".mp4"], 
        file_count="multiple", 
        autofocus=True,
        placeholder="Type your message or upload images/video...",
    ),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(
            label="System Prompt", 
            value="You are a helpful and knowledgeable medical expert. Provide accurate, detailed explanations in clear language.",
            info="Guide the assistant's behavior and expertise"
        ),
        gr.Slider(
            label="Response Length", 
            minimum=100, 
            maximum=4096, 
            step=10, 
            value=1024,
            info="Control how verbose the responses are"
        ),
    ],
    stop_btn=None,
    title="",
    description=DESCRIPTION,
    examples=[
        ["What abnormalities do you see in this chest X-ray?", "examples/chest_xray.jpg"],
        ["Explain the key findings in this MRI scan.", "examples/brain_mri.jpg"],
        ["Describe the progression shown in this video.", "examples/heart_ultrasound.mp4"],
    ],
    cache_examples=False,
    css=custom_css,
    theme=gr.themes.Default(
        primary_hue="indigo",
        secondary_hue="gray",
        font=["Inter", "sans-serif"]
    ),
)

if __name__ == "__main__":
    demo.launch()