File size: 20,535 Bytes
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf9bf7
e272f4f
 
5107657
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107657
e0fb2f6
 
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b557a
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b557a
e272f4f
66b557a
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7877316
 
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
7877316
 
 
 
 
 
 
 
 
e272f4f
 
7877316
e272f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107657
e272f4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import logging
import numpy as np
import uuid
import os
from datetime import datetime
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
from bs4 import BeautifulSoup
import requests
from urllib.parse import urljoin, urlparse
import re
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
from sentence_transformers import SentenceTransformer
from langchain_community.llms import Ollama
import json
import asyncio
from src.config import Config
from qdrant_client.http.exceptions import UnexpectedResponse

# Configure logging
logger = logging.getLogger(__name__)

# Configuration
class Config:
    """
    Application configuration settings.
    Contains constants for storage, models, and Qdrant connection.
    """
    STORAGE_DIR = "data/qdrant_storage"
    EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
    url="https://6fe012ee-5a7c-4304-a77c-293a1888a9cf.us-west-2-0.aws.cloud.qdrant.io"
    QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.NUKB9m360LPEBTnpdo2TJpJmEIttumHLz-9ZbAUBKIM"
    QDRANT_COLLECTION_NAME = "Chat-Bot"
    
    @staticmethod
    def create_storage_dir():
        """Ensure storage directory exists"""
        os.makedirs(Config.STORAGE_DIR, exist_ok=True)

# Data classes
class Document:
    """Represents a document with text content and metadata"""
    def __init__(self, text: str, metadata: Dict[str, Any]):
        self.text = text
        self.metadata = metadata

# Session Manager
class SessionManager:
    """
    Manages user sessions and Qdrant collections.
    Handles session state, document storage, and conversation history.
    """
    
    def __init__(self):
        """Initialize with in-memory sessions and Qdrant connection"""
        from src.prompts.templates import rag_prompt_template
        from src.llm import GeminiProvider
        self.llm = GeminiProvider()
        self.sessions = {}  # In-memory session store
        self.embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
        self.qdrant_client = QdrantClient(
            url=Config.url,
            api_key=Config.QDRANT_API_KEY,
            timeout=30
        )

    def get_collection_name(self, session_id: str) -> str:
        """Generate standardized Qdrant collection name for a session"""
        return f"collection_{session_id}"

    def get_session(self, session_id: str) -> Dict:
        """
        Get or create session with the given ID.
        Maintains original interface while adding robustness.
        """
        if session_id not in self.sessions:
            self._initialize_new_session(session_id)
            print(f"[SessionManager] Created new session: {session_id}")
        return self.sessions[session_id]
    

    def _initialize_new_session(self, session_id: str):
        """Internal method to handle new session creation"""
        self.sessions[session_id] = {
            'documents': [],
            'history': []
        }
        self._ensure_qdrant_collection(session_id)
        print(f"[SessionManager] Initialized session {session_id} with Qdrant collection.")

    def _ensure_qdrant_collection(self, session_id: str):
        """Ensure Qdrant collection exists for the session"""
        collection_name = self.get_collection_name(session_id)
        try:
            # First try to get the collection (might already exist)
            self.qdrant_client.get_collection(collection_name)
            logger.debug(f"Using existing Qdrant collection: {collection_name}")
        except Exception:
            # Collection doesn't exist, create it
            try:
                self.qdrant_client.create_collection(
                    collection_name=collection_name,
                    vectors_config=VectorParams(
                        size=self.embedding_model.get_sentence_embedding_dimension(),
                        distance=Distance.COSINE
                    )
                )
                logger.info(f"Created new Qdrant collection: {collection_name}")
            except UnexpectedResponse as e:
                if "already exists" in str(e):
                    logger.debug(f"Collection already exists: {collection_name}")
                else:
                    logger.error(f"Error creating collection: {e}")
                    raise
            except Exception as e:
                logger.error(f"Unexpected error ensuring collection: {e}")
                raise

    def add_to_history(self, session_id: str, question: str, answer: str):
        """Add conversation to session history"""
        if session_id not in self.sessions:
            logger.warning(f"Session {session_id} not found when adding history")
            return
            
        self.sessions[session_id]['history'].append({
            'question': question,
            'answer': answer,
            'timestamp': datetime.now().isoformat()
        })

    def get_history(self, session_id: str, limit: Optional[int] = None) -> List[Dict]:
        """Get conversation history with optional limit"""
        if session_id not in self.sessions:
            logger.warning(f"Session {session_id} not found when getting history")
            return []
            
        history = self.sessions[session_id]['history']
        return history[-limit:] if limit else history

    def session_exists(self, session_id: str) -> bool:
        """Check if session exists"""
        if session_id in self.sessions:
            return True
        collection_name = self.get_collection_name(session_id)
        try:
            self.qdrant_client.get_collection(collection_name)
            # Add to sessions if collection exists
            self.sessions[session_id] = {
                'documents': [],
                'history': []
            }
            return True
        except Exception:
            return False

    def cleanup_inactive_sessions(self, inactive_minutes: int = 60):
        """Clean up sessions inactive for specified minutes"""
        current_time = datetime.now()
        for session_id in list(self.sessions.keys()):
            history = self.sessions[session_id]['history']
            if history:
                last_activity = datetime.fromisoformat(history[-1]['timestamp'])
                if (current_time - last_activity).total_seconds() > inactive_minutes * 60:
                    del self.sessions[session_id]
                    logger.info(f"Cleaned up inactive session: {session_id}")

    def save_session(self, session_id: str):
        """Qdrant persists data automatically"""
        pass

    def add_conversation(self, session_id: str, query: str, response: str):
        """Add conversation to session history"""
        self.sessions[session_id]['history'].append({"query": query, "response": response})

    def get_conversation_history(self, session_id: str):
        """Get full conversation history"""
        return self.sessions[session_id]['history']

    def add_documents_to_qdrant(self, session_id: str, documents: List[Document]):
        """Add documents to Qdrant collection with validation"""
        texts = [doc.text for doc in documents]
        try:
            embeddings = self.embedding_model.encode(texts, batch_size=32, show_progress_bar=True)
            if isinstance(embeddings, np.ndarray):
                embeddings = embeddings.tolist()
            points = [
                PointStruct(
                    id=idx,
                    vector=embedding,
                    payload={
                        "text": doc.text,
                        "metadata": doc.metadata
                    }
                )
                for idx, (embedding, doc) in enumerate(zip(embeddings, documents))
            ]
            collection_name = self.get_collection_name(session_id)
            operation_info = self.qdrant_client.upsert(
                collection_name=collection_name,
                points=points,
                wait=True  # Wait for operation confirmation
            )
            logger.info(f"Upsert operation status: {operation_info.status}")
            self.sessions[session_id]['documents'].extend(documents)
        except Exception as e:
            logger.error(f"Document insertion failed: {e}")
            raise

    def search_qdrant(self, session_id: str, query_embedding: np.ndarray, k: int = 3):
        """Search Qdrant collection with error handling"""
        try:
            if isinstance(query_embedding, np.ndarray):
                query_embedding = query_embedding.tolist()
            collection_name = self.get_collection_name(session_id)
            return self.qdrant_client.search(
                collection_name=collection_name,
                query_vector=query_embedding,
                limit=k,
                with_payload=True,
                with_vectors=False
            )
        except Exception as e:
            logger.error(f"Search failed: {e}")
            raise

# Web Crawler
class WebCrawler:
    """Handles web crawling with depth control and duplicate prevention"""
    
    def __init__(self, max_depth=2, delay=1):
        self.max_depth = max_depth
        self.delay = delay
        self.visited = set()

    def crawl_recursive(self, url, depth=0):
        """Recursively crawl URLs up to max_depth"""
        print(f"[WebCrawler] Crawling {url} at depth {depth}")
        
        if not hasattr(self, "collected_links"):
            self.collected_links = set()

        if depth > self.max_depth or url in self.visited or len(self.collected_links) >= 50:
            return []

        self.visited.add(url)
        self.collected_links.add(url)
        links = [url]

        try:
            response = requests.get(url, timeout=10, headers={"User-Agent": "Mozilla/5.0"})
            soup = BeautifulSoup(response.content, "html.parser")

            for tag in soup.find_all("a", href=True):
                if len(self.collected_links) >= 10:
                    break  # Stop if 50 links collected

                href = urljoin(url, tag["href"])
                if urlparse(href).netloc == urlparse(url).netloc:
                    links.extend(self.crawl_recursive(href, depth + 1))
        except Exception as e:
            logger.warning(f"Failed to crawl {url}: {e}")

        return list(set(links))

# Connection Manager
class ConnectionManager:
    """Manages active WebSocket connections"""
    
    def __init__(self):
        self.active_connections: Dict[str, WebSocket] = {}

    async def connect(self, websocket: WebSocket, session_id: str):
        """Register new WebSocket connection"""
        await websocket.accept()
        self.active_connections[session_id] = websocket

    async def disconnect(self, session_id: str):
        """Remove WebSocket connection"""
        if session_id in self.active_connections:
            del self.active_connections[session_id]

    async def send_message(self, message: str, session_id: str):
        """Send message to specific WebSocket connection"""
        if session_id in self.active_connections:
            await self.active_connections[session_id].send_text(message)

# RAG System with Qdrant
class RAGSystem:
    """Main RAG system orchestrating crawling, indexing and querying"""
    
    def __init__(self):
        self.session_manager = SessionManager()
        self.crawler = WebCrawler()
        self.llm = Ollama(base_url="http://localhost:11434", model="mistral")

    def crawl_and_index(self, session_id: str, start_url: str) -> Dict[str, Any]:
        """Crawl website and index content in Qdrant"""
        print(f"[RAGSystem] Starting crawl and index for session {session_id} with URL: {start_url}")
        try:
            session = self.session_manager.get_session(session_id)
            all_urls = self.crawler.crawl_recursive(start_url)
            documents, successful_urls = [], []

            print(f"[RAGSystem] Crawled {len(all_urls)} URLs for session {session_id}")

            for url in all_urls[:20]:  # Limit to 20 URLs
                try:
                    print(f"[RAGSystem] Processing URL: {url}")
                    response = requests.get(url, timeout=10, headers={"User-Agent": "Mozilla/5.0"})
                    soup = BeautifulSoup(response.content, "html.parser")
                    for tag in soup(["script", "style"]):
                        tag.decompose()
                    text = " ".join(chunk.strip() for chunk in soup.get_text().splitlines() if chunk.strip())
                    if len(text) > 100:
                        documents.append(Document(text, {"source_url": url, "session_id": session_id}))
                        successful_urls.append(url)
                except Exception as e:
                    logger.warning(f"Error processing {url}: {e}")

            if documents:
                self.session_manager.add_documents_to_qdrant(session_id, documents)
                return {
                    "status": "success",
                    "urls_processed": successful_urls,
                    "total_documents": len(documents)
                }
            return {"status": "error", "message": "No documents indexed"}
        except Exception as e:
            logger.error(f"crawl_and_index error: {e}")
            return {
                "status": "error",
                "message": f"Error during crawling and indexing: {str(e)}"
            }

    async def chat(
        self,
        session_id: str,
        question: str,
        model: str = "mistral",
        ollama_url: str = None,
        gemini_api_key: str = None
    ) -> Dict[str, Any]:
        """
        Handle chat requests with model selection.
        Supports both Mistral (via Ollama) and Gemini models.
        """
        try:
            # Get session data
            session = self.session_manager.get_session(session_id)
            if not session.get('documents'):
                return {
                    "status": "error",
                    "message": "No documents indexed for this session"
                }

            # Select appropriate LLM
            if model == "mistral" and ollama_url:
                self.llm = Ollama(base_url=ollama_url, model="mistral")
            elif model == "gemini" and gemini_api_key:
                from src.llm import GeminiProvider
                self.llm = GeminiProvider()

            # Process the query
            result = self.process_query(session_id, question)
            
            # Add to conversation history if successful
            if result["status"] == "success":
                self.session_manager.add_conversation(
                    session_id, 
                    question, 
                    result["response"]
                )

            return result

        except Exception as e:
            logger.error(f"Chat error: {str(e)}")
            return {
                "status": "error",
                "message": f"Chat error: {str(e)}"
            }

    def process_query(self, session_id: str, query: str) -> Dict[str, Any]:
        """Process user query through RAG pipeline"""
        try:
            # Import rag_prompt_template here to ensure it's defined
            from src.prompts.templates import rag_prompt_template
            # Validate and encode query
            query_embedding = self.session_manager.embedding_model.encode(query)
            if isinstance(query_embedding, np.ndarray):
                query_embedding = query_embedding.astype("float32")
            
            # Search with proper parameters
            search_result = self.session_manager.search_qdrant(
                session_id=session_id,
                query_embedding=query_embedding
            )
            
            # Generate response using retrieved context
            context = "\n\n".join(hit.payload["text"] for hit in search_result)
            prompt = rag_prompt_template(context, query)
            response = self.llm.generate([prompt])


            if hasattr(response, "generations"):
                response_text = response.generations[0][0].text
            else:
                response_text = response


            return {
                "status": "success",
                "response": response_text,
                "sources": [hit.payload["metadata"] for hit in search_result]
            }
        except Exception as e:
            logger.error(f"Query processing failed: {e}")
            return {"status": "error", "message": str(e)}

# FastAPI App
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize RAG system
rag = RAGSystem()

# Request models
class URLRequest(BaseModel):
    """Request model for URL crawling"""
    url: str
    session_id: Optional[str] = None

class ChatRequest(BaseModel):
    """Request model for chat queries"""
    session_id: str
    question: str

class SearchRequest(BaseModel):
    """Request model for direct searches"""
    session_id: str
    query: str
    limit: Optional[int] = 5

# API Endpoints
@app.get("/")
async def root():
    """Health check endpoint"""
    return {"message": "RAG with Ollama Mistral and Qdrant is running"}

@app.post("/create_session")
async def create_session():
    """Create a new session ID"""
    session_id = str(uuid.uuid4())
    return {"session_id": session_id, "status": "success"}

@app.post("/crawl_and_index")
async def crawl_and_index(request: URLRequest):
    """Crawl and index a website"""
    session_id = request.session_id or str(uuid.uuid4())
    result = rag.crawl_and_index(session_id, request.url)
    return result

@app.post("/chat")
async def chat(request: ChatRequest):
    """Handle chat request"""
    return await rag.chat(request.session_id, request.question)

@app.post("/search")
async def search(request: SearchRequest):
    """Handle direct search request"""
    try:
        session = rag.session_manager.get_session(request.session_id)
        query_embedding = rag.session_manager.embedding_model.encode(request.query)
        if isinstance(query_embedding, np.ndarray):
            query_embedding = query_embedding.tolist()
        collection_name = rag.session_manager.get_collection_name(request.session_id)
        search_results = rag.session_manager.qdrant_client.search(
            collection_name=collection_name,
            query_vector=query_embedding,
            limit=request.limit
        )
        return {
            "status": "success",
            "results": [
                {
                    "text": hit.payload["text"],
                    "score": hit.score,
                    "metadata": hit.payload.get("metadata", {})
                }
                for hit in search_results
            ]
        }
    except Exception as e:
        logger.error(f"API search failed: {e}")
        raise HTTPException(status_code=500, detail=str(e))

@app.websocket("/ws/chat")
async def websocket_endpoint(websocket: WebSocket):
    """WebSocket endpoint for real-time chat"""
    await websocket.accept()
    try:
        while True:
            data = await websocket.receive_json()
            uid = data.get("uid")
            question = data.get("question")

            if not uid or not question:
                await websocket.send_json({"error": "Missing 'uid' or 'question'"})
                continue

            # Get response from RAG system
            response = await rag.chat(uid, question)
            
            # Handle both success and error cases
            if response["status"] == "success":
                await websocket.send_json({
                    "uid": uid,
                    "question": question,
                    "answer": response["response"],
                    "sources": response.get("sources", [])
                })
            else:
                await websocket.send_json({
                    "uid": uid,
                    "error": response["message"]
                })

    except WebSocketDisconnect:
        logger.info("WebSocket disconnected")
    except Exception as e:
        await websocket.send_json({"error": str(e)})

# Main entry point
if __name__ == "__main__":
    Config.create_dirs()
    from src import launch_interface
    launch_interface()