Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| """ | |
| 系統需求: | |
| - gradio: 用於建立 Web UI | |
| - opencv-python: 用於圖片處理 | |
| - ultralytics: YOLOv8 官方函式庫 | |
| - Pillow: 圖片處理基礎庫 | |
| - transformers: (可選,若YOLO模型需要) | |
| """ | |
| import gradio as gr | |
| import os | |
| import cv2 | |
| from ultralytics import YOLO | |
| import shutil | |
| import zipfile | |
| import uuid # 匯入 uuid 以生成唯一的執行 ID | |
| from pathlib import Path # 匯入 Path 以更方便地操作路徑 | |
| import gemini_ai as genai | |
| from datetime import datetime | |
| import mongo_lib as mongo | |
| def create_zip_archive(files, zip_filename): | |
| """ | |
| 將一系列檔案壓縮成一個 zip 檔案。 | |
| Args: | |
| files (list): 要壓縮的檔案路徑列表。 | |
| zip_filename (str): 產生的 zip 檔案路徑。 | |
| Returns: | |
| str: 產生的 zip 檔案路徑。 | |
| """ | |
| with zipfile.ZipFile(zip_filename, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
| for file in files: | |
| if os.path.exists(file): | |
| # 使用 os.path.basename 確保只寫入檔案名稱,而非完整路徑 | |
| zipf.write(file, os.path.basename(file)) | |
| else: | |
| print(f"警告: 檔案 '{file}' 不存在,無法加入壓縮檔。") | |
| return zip_filename | |
| def gradio_multi_model_detection( | |
| image_files, | |
| model_files, | |
| conf_threshold, | |
| enable_mllm, | |
| mllm_prompt, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """ | |
| Gradio 的主要處理函式,使用生成器 (yield) 實現流式輸出。 | |
| Args: | |
| image_files (list): Gradio File 元件回傳的圖片檔案列表。 | |
| model_files (list): Gradio File 元件回傳的模型檔案列表。 | |
| conf_threshold (float): 置信度閾值。 | |
| enable_mllm (bool): 是否啟用 MLLM 分析。 | |
| mllm_prompt (str): 使用者自訂的 MLLM prompt。 | |
| progress (gr.Progress): Gradio 的進度條元件。 | |
| Yields: | |
| dict: 用於更新 Gradio 介面元件的字典。 | |
| """ | |
| global_datetime = datetime.now() | |
| #寫主表log | |
| document = {"log_style":"master", | |
| "create_datetime": str(global_datetime), | |
| "image_files": image_files, | |
| "model_files": model_files, | |
| "conf_threshold":conf_threshold, | |
| "enable_mllm":enable_mllm, | |
| "mllm_prompt":mllm_prompt | |
| } | |
| mongo.insert_mongodb_log("multi_model_detection",document) #寫入log方便日後查驗 | |
| if not image_files: | |
| yield { | |
| output_status: gr.update(value="錯誤:請至少上傳一張圖片。"), | |
| output_gallery: None, | |
| output_text: None, | |
| download_button: None | |
| } | |
| return | |
| # --- 1. 初始化設定 --- | |
| # 為本次執行創建一個唯一的子目錄 | |
| run_id = str(uuid.uuid4()) | |
| base_output_dir = Path('gradio_detection_results') | |
| run_output_dir = base_output_dir / f"run_{run_id[:8]}" | |
| run_output_dir.mkdir(parents=True, exist_ok=True) | |
| image_paths = [file.name for file in image_files] | |
| model_paths = [file.name for file in model_files] if model_files else [] | |
| # --- 2. 載入模型 --- | |
| yield {output_status: gr.update(value="正在載入模型...")} | |
| loaded_models = [] | |
| if not model_paths: | |
| # 如果沒有上傳模型,使用預設模型 | |
| default_model_path = 'yolov8n.pt' | |
| try: | |
| model = YOLO(default_model_path) | |
| loaded_models.append((default_model_path, model)) | |
| except Exception as e: | |
| yield {output_status: gr.update(value=f"錯誤: 無法載入預設模型 '{default_model_path}' - {e}")} | |
| return | |
| else: | |
| for model_path in model_paths: | |
| try: | |
| model = YOLO(model_path) | |
| loaded_models.append((model_path, model)) | |
| except Exception as e: | |
| print(f"警告: 無法載入模型 '{model_path}' - {e},將跳過此模型。") | |
| continue | |
| if not loaded_models: | |
| yield {output_status: gr.update(value="錯誤: 沒有任何模型成功載入。")} | |
| return | |
| # --- 3. 逐一處理圖片 --- | |
| total_images = len(image_paths) | |
| annotated_image_paths = [] | |
| all_result_files = [] | |
| # results_map 儲存圖片路徑與其對應的文字檔路徑,用於後續點擊查詢 | |
| results_map = {} | |
| # all_texts 用於收集所有圖片的辨識結果文字 | |
| all_texts = [] | |
| for i, image_path_str in enumerate(image_paths): | |
| image_path = Path(image_path_str) | |
| progress(i / total_images, desc=f"處理中: {image_path.name}") | |
| yield { | |
| output_status: gr.update(value=f"處理中... ({i+1}/{total_images}) - {image_path.name}"), | |
| output_gallery: gr.update(value=annotated_image_paths) | |
| } | |
| original_image = cv2.imread(str(image_path)) | |
| if original_image is None: | |
| print(f"警告: 無法讀取圖片 '{image_path}',跳過。") | |
| continue | |
| annotated_image = original_image.copy() | |
| image_base_name = image_path.stem | |
| # --- 3a. YOLO 物件偵測 --- | |
| yolo_output_content = [f"--- 檔案: {image_path.name} ---"] | |
| all_detections_for_image = [] | |
| for model_path_str, model_obj in loaded_models: | |
| model_name = Path(model_path_str).name | |
| yolo_output_content.append(f"--- 模型: {model_name} ---") | |
| results = model_obj(str(image_path), verbose=False, device="cpu")[0] | |
| if results.boxes: | |
| for box in results.boxes: | |
| conf = float(box.conf[0]) | |
| if conf >= conf_threshold: | |
| x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
| cls_id = int(box.cls[0]) | |
| cls_name = model_obj.names[cls_id] | |
| detection_info = {'model_name': model_name, 'class_name': cls_name, 'confidence': conf, 'bbox': (x1, y1, x2, y2)} | |
| all_detections_for_image.append(detection_info) | |
| yolo_output_content.append(f" - {cls_name} (信賴度: {conf:.2f}) [座標: {x1},{y1},{x2},{y2}]") | |
| else: | |
| yolo_output_content.append(" 未偵測到任何物件。") | |
| # 繪製偵測框 | |
| colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255), (0, 255, 255)] | |
| color_map = {Path(p).name: colors[idx % len(colors)] for idx, (p, _) in enumerate(loaded_models)} | |
| for det in all_detections_for_image: | |
| x1, y1, x2, y2 = det['bbox'] | |
| color = color_map.get(det['model_name'], (200, 200, 200)) | |
| label = f"{det['class_name']} {det['confidence']:.2f}" | |
| cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2) | |
| cv2.putText(annotated_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
| # 儲存 YOLO 標註圖 | |
| output_image_path = run_output_dir / f"{image_base_name}_yolo_detected.jpg" | |
| cv2.imwrite(str(output_image_path), annotated_image) | |
| annotated_image_paths.append(str(output_image_path)) | |
| all_result_files.append(str(output_image_path)) | |
| # 儲存 YOLO 辨識資訊 | |
| output_yolo_txt_path = run_output_dir / f"{image_base_name}_yolo_objects.txt" | |
| output_yolo_txt_path.write_text("\n".join(yolo_output_content), encoding='utf-8') | |
| all_result_files.append(str(output_yolo_txt_path)) | |
| # --- 3b. MLLM 分析 (如果啟用) --- | |
| output_mllm_txt_path = None | |
| mllm_result_content = "" | |
| if enable_mllm: | |
| try: | |
| prompt_to_use = mllm_prompt if mllm_prompt and mllm_prompt.strip() else None | |
| mllm_str = genai.analyze_content_with_gemini(str(image_path), prompt_to_use) | |
| mllm_result_content = f"--- MLLM 分析結果 ---\n{mllm_str}" | |
| except Exception as e: | |
| mllm_result_content = f"--- MLLM 分析失敗 ---\n原因: {e}" | |
| output_mllm_txt_path = run_output_dir / f"{image_base_name}_mllm_result.txt" | |
| output_mllm_txt_path.write_text(mllm_result_content, encoding='utf-8') | |
| all_result_files.append(str(output_mllm_txt_path)) | |
| #寫明細表log | |
| document = {"log_style":"detail", | |
| "create_datetime": str(global_datetime), | |
| "image_path": str(image_path), | |
| "yolo_result": yolo_output_content, | |
| "enable_mllm": enable_mllm, | |
| "mllm_prompt": mllm_prompt, | |
| "mllm_result": mllm_result_content} | |
| mongo.insert_mongodb_log("multi_model_detection",document) #寫入log方便日後查驗 | |
| # 將本次圖片的結果加入到總列表中 | |
| all_texts.append("\n".join(yolo_output_content)) | |
| if output_mllm_txt_path: | |
| all_texts.append(output_mllm_txt_path.read_text(encoding='utf-8')) | |
| # --- 4. 完成處理,打包並更新最終結果 --- | |
| progress(1, desc="打包結果中...") | |
| zip_filename = run_output_dir / f"run_{run_id[:8]}_results.zip" | |
| created_zip_path = create_zip_archive(all_result_files, str(zip_filename)) | |
| final_status = f"處理完成!共 {total_images} 張圖片。結果儲存於: {run_output_dir.absolute()}" | |
| combined_text_output = "\n\n".join(all_texts) | |
| yield { | |
| output_status: gr.update(value=final_status), | |
| download_button: gr.update(value=created_zip_path, visible=True), | |
| output_text: gr.update(value=combined_text_output), | |
| output_gallery: gr.update(value=annotated_image_paths) # 確保最終 gallery 也被更新 | |
| } | |
| def toggle_mllm_prompt(is_enabled): | |
| """ | |
| 根據 Checkbox 狀態,顯示或隱藏 MLLM prompt 輸入框。 | |
| """ | |
| return gr.update(visible=is_enabled) | |
| # --- Gradio Interface --- | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# 智慧影像分析工具 (YOLO + MLLM)") | |
| gr.Markdown("上傳圖片與YOLO模型進行物件偵測,並可選用MLLM進行進階圖像理解。 ver.250824.1") | |
| # mongo_uri = os.getenv('mongo_uri') | |
| # gr.Markdown(mongo_uri) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| # 輸入元件 | |
| image_input = gr.File(label="上傳圖片", file_count="multiple", file_types=["image"]) | |
| #model_input = gr.File(label="上傳YOLO模型 (.pt)", file_count="multiple", file_types=[".pt"], info="若不提供,將使用預設的 yolov8n.pt 模型。") | |
| model_input = gr.File(label="上傳YOLO模型 (.pt)", file_count="multiple", file_types=[".pt"]) | |
| with gr.Accordion("進階設定", open=False): | |
| conf_slider = gr.Slider(minimum=0.1, maximum=1, value=0.40, step=0.05, label="信賴度閾值") | |
| mllm_enabled_checkbox = gr.Checkbox(label="開啟MLLM辨識", value=False) | |
| mllm_prompt_input = gr.Textbox(label="自訂 MLLM Prompt (選填)", placeholder="例如:請描述圖中人物的穿著與場景。", visible=False) | |
| run_button = gr.Button("開始辨識", variant="primary") | |
| with gr.Column(scale=2): | |
| # 輸出元件 | |
| output_gallery = gr.Gallery(label="辨識結果預覽", height=500, object_fit="contain", allow_preview=True) | |
| output_text = gr.Textbox(label="詳細辨識資訊", lines=15, placeholder="辨識完成後,所有結果將顯示於此。") | |
| output_status = gr.Textbox(label="執行狀態", interactive=False) | |
| download_button = gr.File(label="下載所有結果 (.zip)", file_count="single", visible=False) | |
| # --- 事件綁定 --- | |
| # 點擊 "開始辨識" 按鈕 | |
| run_button.click( | |
| fn=gradio_multi_model_detection, | |
| inputs=[image_input, model_input, conf_slider, mllm_enabled_checkbox, mllm_prompt_input], | |
| outputs=[output_gallery, output_status, download_button, output_text] | |
| ) | |
| # 勾選/取消 "開啟MLLM辨識" | |
| mllm_enabled_checkbox.change( | |
| fn=toggle_mllm_prompt, | |
| inputs=mllm_enabled_checkbox, | |
| outputs=mllm_prompt_input | |
| ) | |
| # 啟動 Gradio 應用 | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) | |
| #demo.launch(share=True) | |