File size: 8,358 Bytes
a08e47f b842669 a08e47f b842669 a08e47f b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 a08e47f b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 414eaf1 b842669 a08e47f b842669 a08e47f b842669 414eaf1 b842669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import zipfile
import os
import uuid
import shutil
import subprocess
import sys
import time
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
# Directory setup
UPLOAD_DIR = "uploads"
MODEL_DIR = "models"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(MODEL_DIR, exist_ok=True)
def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size, image_size):
try:
# Generate unique ID for this training session
uid = str(uuid.uuid4())
zip_path = os.path.join(UPLOAD_DIR, f"{uid}.zip")
# Copy uploaded file to our storage
shutil.copyfile(dataset_file.name, zip_path)
# Extract dataset
extract_path = os.path.join(UPLOAD_DIR, uid)
os.makedirs(extract_path, exist_ok=True)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
# Locate train and validation directories
train_dir = os.path.join(extract_path, "train")
val_dir = os.path.join(extract_path, "validation")
# Verify dataset structure
if not os.path.exists(train_dir) or not os.path.exists(val_dir):
return "Error: Dataset must contain 'train' and 'validation' folders", None, None, None
# Create data generators
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
zoom_range=0.2
)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
# Update num_classes based on actual data
actual_classes = train_generator.num_classes
if actual_classes != num_classes:
num_classes = actual_classes
# Build model
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(image_size, image_size, 3)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(64, 3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, 3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
# Train model
start_time = time.time()
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=epochs,
validation_data=val_generator,
validation_steps=val_generator.samples // val_generator.batch_size,
verbose=0
)
training_time = time.time() - start_time
# Save models
model_dir = os.path.join(MODEL_DIR, uid)
os.makedirs(model_dir, exist_ok=True)
# Save H5 model
h5_path = os.path.join(model_dir, f"{model_name}.h5")
model.save(h5_path)
# Save SavedModel
savedmodel_path = os.path.join(model_dir, "savedmodel")
model.save(savedmodel_path)
# Convert to TensorFlow.js
tfjs_path = os.path.join(model_dir, "tfjs")
try:
subprocess.run([
"tensorflowjs_converter",
"--input_format=tf_saved_model",
savedmodel_path,
tfjs_path
], check=True)
except Exception:
# Install tensorflowjs if not available
subprocess.run([sys.executable, "-m", "pip", "install", "tensorflowjs"], check=True)
subprocess.run([
"tensorflowjs_converter",
"--input_format=tf_saved_model",
savedmodel_path,
tfjs_path
], check=True)
# Calculate model size
model_size = 0
for dirpath, _, filenames in os.walk(model_dir):
for f in filenames:
fp = os.path.join(dirpath, f)
model_size += os.path.getsize(fp)
model_size_mb = model_size / (1024 * 1024)
# Prepare results
result_text = f"""
✅ Training completed successfully!
⏱️ Training time: {training_time:.2f} seconds
📊 Best validation accuracy: {max(history.history['val_accuracy']):.4f}
📦 Model size: {model_size_mb:.2f} MB
🗂️ Number of classes: {num_classes}
Download links available below ⬇️
"""
# Return paths for download
return result_text, h5_path, savedmodel_path, tfjs_path
except Exception as e:
return f"❌ Training failed: {str(e)}", None, None, None
# Gradio interface
with gr.Blocks(title="AI Image Classifier Trainer") as demo:
gr.Markdown("# 🖼️ AI Image Classifier Trainer")
gr.Markdown("""
Upload your dataset (ZIP file containing `train/` and `validation/` folders),
configure training parameters, and download models in multiple formats.
""")
with gr.Row():
with gr.Column():
dataset = gr.File(label="Dataset ZIP File", file_types=[".zip"])
model_name = gr.Textbox(label="Model Name", value="my_classifier")
num_classes = gr.Slider(2, 100, value=5, step=1, label="Number of Classes")
epochs = gr.Slider(5, 200, value=30, step=1, label="Training Epochs")
batch_size = gr.Radio([16, 32, 64], value=32, label="Batch Size")
image_size = gr.Radio([128, 224, 256], value=224, label="Image Size (px)")
train_btn = gr.Button("🚀 Train Model", variant="primary")
with gr.Column():
output = gr.Textbox(label="Training Results", interactive=False)
with gr.Column(visible=False) as download_col:
h5_download = gr.File(label="H5 Model Download")
savedmodel_download = gr.File(label="SavedModel Download")
tfjs_download = gr.File(label="TensorFlow.js Download")
def toggle_downloads(result, h5_path, saved_path, tfjs_path):
if h5_path:
return (
gr.Column(visible=True),
gr.File(value=h5_path),
gr.File(value=saved_path),
gr.File(value=tfjs_path)
)
return (
gr.Column(visible=False),
gr.File(value=None),
gr.File(value=None),
gr.File(value=None)
)
train_btn.click(
fn=train_and_export,
inputs=[dataset, model_name, num_classes, epochs, batch_size, image_size],
outputs=[output, h5_download, savedmodel_download, tfjs_download]
).then(
fn=toggle_downloads,
inputs=[output, h5_download, savedmodel_download, tfjs_download],
outputs=[download_col, h5_download, savedmodel_download, tfjs_download]
)
# Launch settings for Hugging Face Spaces
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_file_size="100mb" # Allows 100MB file uploads
)
|