# ---- MUST be first lines in app.py ---- import os # Stop PyTorch Dynamo/Inductor from probing/compiling C++ kernels on CPU Spaces os.environ.setdefault("TORCHINDUCTOR_DISABLE", "1") os.environ.setdefault("TORCH_COMPILE_DISABLE", "1") # (Optional) tell build tools where compilers live if present os.environ.setdefault("CXX", "/usr/bin/g++") os.environ.setdefault("CC", "/usr/bin/gcc") # --------------------------------------- import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, pipeline from huggingface_hub import InferenceClient # Cache model loading to avoid re-download on every run @st.cache_resource def load_model(model_name): """ Load the specified model and tokenizer. Returns a transformers pipeline for summarization or text generation. """ if model_name == "microsoft/bitnet-b1.58-2B-4T": # Load BitNet model (causal LM) and tokenizer dtype = torch.float32 # use float32 on CPU tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype, device_map="auto") # Create a text-generation pipeline for BitNet gen_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, # default max summary length temperature=0.2, # a low temperature for more focused output pad_token_id=tokenizer.eos_token_id ) return gen_pipeline, tokenizer # return tokenizer as well for prompt preparation else: # For seq2seq models like T5 or BART, use summarization pipeline summarizer = pipeline("summarization", model=model_name, tokenizer=model_name, device=-1) return summarizer, None # Set page configuration st.set_page_config(page_title="Text Summarizer", page_icon="🤖") st.title("📃 Text Summarizer") # Model selection: local models and an option for Hugging Face API model_options = [ "t5-small", "facebook/bart-large-cnn", "microsoft/bitnet-b1.58-2B-4T", "Use Hugging Face Inference API (bart-large-cnn)" ] model_choice = st.selectbox("Choose a summarization model:", model_options, help="Select a model to use for generating the summary. 'Inference API' will call a hosted model via Hugging Face.") # Input methods: Text area and File uploader text_input = st.text_area("Enter text to summarize (English only):", height=200) uploaded_file = st.file_uploader("...or upload a text file", type=["txt"]) if uploaded_file is not None: # If a file is uploaded, read it (assuming UTF-8 text file) try: file_content = uploaded_file.read().decode("utf-8") except Exception: file_content = uploaded_file.read().decode("latin-1") # fallback decoding text_to_summarize = file_content else: text_to_summarize = text_input # Button to generate summary if st.button("Summarize"): if not text_to_summarize or text_to_summarize.strip() == "": st.warning("Please provide some text (or upload a file) to summarize.") else: st.write("Generating summary...") # Local model inference if model_choice != "Use Hugging Face Inference API (bart-large-cnn)": summarizer_pipeline, tok = load_model(model_choice) if model_choice == "microsoft/bitnet-b1.58-2B-4T": # Prepare BitNet prompt for summarization prompt = ( "Summarize the text below in 2-3 concise sentences focusing on key facts and implications.\n" f"Text:\n{ {text_to_summarize} }\nSummary:" ) # Use the text-generation pipeline to complete the prompt result = summarizer_pipeline(prompt, max_new_tokens=200, do_sample=False)[0]["generated_text"] # The pipeline returns the full prompt + completion; extract only after 'Summary:' summary = result.split("Summary:")[-1].strip() else: # For T5 or BART, use the summarization pipeline directly summary = summarizer_pipeline(text_to_summarize, max_length=150, min_length=30, do_sample=False)[0]["summary_text"] st.subheader("Summary") st.write(summary) else: # Use Hugging Face Inference API with a hosted model (bart-large-cnn) hf_token = os.getenv("HF_TOKEN") or (st.secrets["HF_TOKEN"] if "HF_TOKEN" in st.secrets else None) client = InferenceClient(model="facebook/bart-large-cnn", token=hf_token) # Call the summarization API try: result = client.summarization(text_to_summarize) # The result is an object with `summary_text` attribute (or dict with 'summary_text') summary_text = result.summary_text if hasattr(result, "summary_text") else result["summary_text"] except Exception as e: st.error(f"Error using Inference API: {e}") summary_text = None if summary_text: st.subheader("Summary") st.write(summary_text)