albertchristopher commited on
Commit
68ca6d4
·
verified ·
1 Parent(s): 1a72c31

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +148 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,150 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import textwrap
 
3
  import streamlit as st
4
+ from typing import Optional
5
+ from utils import (
6
+ load_bitnet_model,
7
+ map_reduce_summarize,
8
+ )
9
 
10
+ # ---------- Page Config ----------
11
+ st.set_page_config(page_title="BitNet Summarizer", page_icon="📝", layout="wide")
12
+
13
+ st.title("📝 Text Summarizer BitNet on Hugging Face Spaces")
14
+ st.caption(
15
+ "Open-source summarizer powered by **microsoft/bitnet-b1.58-2B-4T** with a map‑reduce strategy for long documents."
16
+ )
17
+
18
+ # ---------- Sidebar Controls ----------
19
+ with st.sidebar:
20
+ st.header("Engine")
21
+ engine = st.radio(
22
+ "Choose inference engine:",
23
+ options=["BitNet (local)", "HF Inference API (fallback)"],
24
+ index=0,
25
+ help="Local BitNet loads inside your Space. Fallback uses a hosted summarization model via HF Inference API.",
26
+ )
27
+
28
+ st.header("Generation Settings")
29
+ temperature = st.slider("temperature", 0.0, 1.5, 0.3, 0.05)
30
+ top_p = st.slider("top_p", 0.5, 1.0, 0.95, 0.01)
31
+ chunk_tokens = st.slider("chunk size (tokens)", 400, 1600, 900, 50)
32
+ chunk_overlap = st.slider("overlap (tokens)", 0, 200, 60, 5)
33
+ chunk_max_new = st.slider("chunk max_new_tokens", 32, 256, 128, 8)
34
+ final_max_new = st.slider("final max_new_tokens", 64, 512, 220, 8)
35
+
36
+ st.markdown("---")
37
+ st.subheader("HF Inference API Settings")
38
+ hf_token = st.text_input(
39
+ "HF_TOKEN (optional)",
40
+ type="password",
41
+ help="Personal access token with Inference API scope if you want to use the fallback engine.",
42
+ value=os.environ.get("HF_TOKEN", ""),
43
+ )
44
+
45
+ # ---------- Input Area ----------
46
+ DEFAULT_TEXT = (
47
+ "The Hugging Face Spaces platform makes it simple to build and share machine learning apps. "
48
+ "This example demonstrates a map‑reduce summarization approach using an efficient BitNet model. "
49
+ "For longer documents, we split text into token chunks, summarize each piece, and merge the summaries "
50
+ "into a coherent final summary."
51
+ )
52
+
53
+ text = st.text_area(
54
+ "Paste your text here:",
55
+ value=DEFAULT_TEXT,
56
+ height=260,
57
+ help="Works with long documents via chunking. You can also try the sample text to see the pipeline.",
58
+ )
59
+
60
+ colA, colB = st.columns([1, 2])
61
+ with colA:
62
+ run = st.button("Summarize", type="primary")
63
+ with colB:
64
+ st.write("")
65
+
66
+ # ---------- Inference API Fallback ----------
67
+ # Lightweight helper using huggingface_hub's InferenceClient
68
+ from huggingface_hub import InferenceClient
69
+
70
+ def summarize_via_hf_api(text: str, token: str) -> Optional[str]:
71
+ try:
72
+ client = InferenceClient(token=token)
73
+ # A small, instruction‑tuned summarizer works well as fallback
74
+ # DistilBART CNN is common; switch to any hosted summarization model you prefer
75
+ model = "sshleifer/distilbart-cnn-12-6"
76
+ out = client.text_generation(
77
+ model=model,
78
+ prompt=(
79
+ "Summarize the following text in 3-6 concise sentences, preserving key facts and avoiding hallucinations.\n\n" + text
80
+ ),
81
+ max_new_tokens=220,
82
+ temperature=0.3,
83
+ top_p=0.95,
84
+ )
85
+ return out
86
+ except Exception as e:
87
+ st.error(f"HF Inference API error: {e}")
88
+ return None
89
+
90
+ # ---------- Main Action ----------
91
+ if run:
92
+ if not text.strip():
93
+ st.warning("Please paste some text to summarize.")
94
+ st.stop()
95
+
96
+ if engine.startswith("HF Inference API"):
97
+ if not hf_token.strip():
98
+ st.error("Please provide an HF_TOKEN to use the Inference API fallback.")
99
+ st.stop()
100
+ with st.spinner("Calling HF Inference API…"):
101
+ summary = summarize_via_hf_api(text, hf_token)
102
+ if summary:
103
+ st.success("Done!")
104
+ st.markdown("### Summary")
105
+ st.write(summary)
106
+ st.stop()
107
+
108
+ # Local BitNet path
109
+ info_box = st.empty()
110
+ info_box.info(
111
+ "Loading BitNet model. On CPU this can take several minutes on first run; subsequent runs are cached."
112
+ )
113
+
114
+ @st.cache_resource(show_spinner=False)
115
+ def _load():
116
+ return load_bitnet_model()
117
+
118
+ tok, model = _load()
119
+ info_box.empty()
120
+
121
+ with st.spinner("Summarizing with BitNet (map‑reduce)…"):
122
+ summary = map_reduce_summarize(
123
+ text=text,
124
+ tokenizer=tok,
125
+ model=model,
126
+ max_chunk_tokens=chunk_tokens,
127
+ overlap=chunk_overlap,
128
+ chunk_max_new_tokens=chunk_max_new,
129
+ final_max_new_tokens=final_max_new,
130
+ temperature=temperature,
131
+ top_p=top_p,
132
+ )
133
+
134
+ st.success("Done!")
135
+ st.markdown("### Summary")
136
+ st.write(summary)
137
+
138
+ with st.expander("Debug / details"):
139
+ st.markdown(
140
+ "- **Engine:** BitNet (local) \n"
141
+ f"- **chunk size:** {chunk_tokens} tokens, **overlap:** {chunk_overlap} tokens \n"
142
+ f"- **temperature:** {temperature}, **top_p:** {top_p} \n"
143
+ f"- **chunk max_new_tokens:** {chunk_max_new}, **final max_new_tokens:** {final_max_new}"
144
+ )
145
+
146
+ st.markdown("---")
147
+ st.caption(
148
+ "Built with Streamlit + Transformers + Hugging Face Hub. Model: microsoft/bitnet-b1.58-2B-4T.\n"
149
+ "Tip: Select a GPU in Space settings for faster startup."
150
+ )