Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # Modified by Bowen Cheng from: https://github.com/facebookresearch/detectron2/blob/master/demo/demo.py | |
| import argparse | |
| import glob | |
| import multiprocessing as mp | |
| import os | |
| # fmt: off | |
| import sys | |
| sys.path.insert(1, os.path.join(sys.path[0], '..')) | |
| # fmt: on | |
| import tempfile | |
| import time | |
| import warnings | |
| import cv2 | |
| import numpy as np | |
| import tqdm | |
| from torch.cuda.amp import autocast | |
| from detectron2.config import get_cfg | |
| from detectron2.data.detection_utils import read_image | |
| from detectron2.projects.deeplab import add_deeplab_config | |
| from detectron2.utils.logger import setup_logger | |
| from mask2former import add_maskformer2_config | |
| from mask2former_video import add_maskformer2_video_config | |
| from predictor import VisualizationDemo | |
| # constants | |
| WINDOW_NAME = "mask2former video demo" | |
| def setup_cfg(args): | |
| # load config from file and command-line arguments | |
| cfg = get_cfg() | |
| add_deeplab_config(cfg) | |
| add_maskformer2_config(cfg) | |
| add_maskformer2_video_config(cfg) | |
| cfg.merge_from_file(args.config_file) | |
| cfg.merge_from_list(args.opts) | |
| cfg.freeze() | |
| return cfg | |
| def get_parser(): | |
| parser = argparse.ArgumentParser(description="maskformer2 demo for builtin configs") | |
| parser.add_argument( | |
| "--config-file", | |
| default="configs/youtubevis_2019/video_maskformer2_R50_bs16_8ep.yaml", | |
| metavar="FILE", | |
| help="path to config file", | |
| ) | |
| parser.add_argument("--video-input", help="Path to video file.") | |
| parser.add_argument( | |
| "--input", | |
| nargs="+", | |
| help="A list of space separated input images; " | |
| "or a single glob pattern such as 'directory/*.jpg'" | |
| "this will be treated as frames of a video", | |
| ) | |
| parser.add_argument( | |
| "--output", | |
| help="A file or directory to save output visualizations. " | |
| "If not given, will show output in an OpenCV window.", | |
| ) | |
| parser.add_argument( | |
| "--save-frames", | |
| default=False, | |
| help="Save frame level image outputs.", | |
| ) | |
| parser.add_argument( | |
| "--confidence-threshold", | |
| type=float, | |
| default=0.5, | |
| help="Minimum score for instance predictions to be shown", | |
| ) | |
| parser.add_argument( | |
| "--opts", | |
| help="Modify config options using the command-line 'KEY VALUE' pairs", | |
| default=[], | |
| nargs=argparse.REMAINDER, | |
| ) | |
| return parser | |
| def test_opencv_video_format(codec, file_ext): | |
| with tempfile.TemporaryDirectory(prefix="video_format_test") as dir: | |
| filename = os.path.join(dir, "test_file" + file_ext) | |
| writer = cv2.VideoWriter( | |
| filename=filename, | |
| fourcc=cv2.VideoWriter_fourcc(*codec), | |
| fps=float(30), | |
| frameSize=(10, 10), | |
| isColor=True, | |
| ) | |
| [writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)] | |
| writer.release() | |
| if os.path.isfile(filename): | |
| return True | |
| return False | |
| if __name__ == "__main__": | |
| mp.set_start_method("spawn", force=True) | |
| args = get_parser().parse_args() | |
| setup_logger(name="fvcore") | |
| logger = setup_logger() | |
| logger.info("Arguments: " + str(args)) | |
| cfg = setup_cfg(args) | |
| demo = VisualizationDemo(cfg) | |
| if args.output: | |
| os.makedirs(args.output, exist_ok=True) | |
| if args.input: | |
| if len(args.input) == 1: | |
| args.input = glob.glob(os.path.expanduser(args.input[0])) | |
| assert args.input, "The input path(s) was not found" | |
| vid_frames = [] | |
| for path in args.input: | |
| img = read_image(path, format="BGR") | |
| vid_frames.append(img) | |
| start_time = time.time() | |
| with autocast(): | |
| predictions, visualized_output = demo.run_on_video(vid_frames) | |
| logger.info( | |
| "detected {} instances per frame in {:.2f}s".format( | |
| len(predictions["pred_scores"]), time.time() - start_time | |
| ) | |
| ) | |
| if args.output: | |
| if args.save_frames: | |
| for path, _vis_output in zip(args.input, visualized_output): | |
| out_filename = os.path.join(args.output, os.path.basename(path)) | |
| _vis_output.save(out_filename) | |
| H, W = visualized_output[0].height, visualized_output[0].width | |
| cap = cv2.VideoCapture(-1) | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(os.path.join(args.output, "visualization.mp4"), fourcc, 10.0, (W, H), True) | |
| for _vis_output in visualized_output: | |
| frame = _vis_output.get_image()[:, :, ::-1] | |
| out.write(frame) | |
| cap.release() | |
| out.release() | |
| elif args.video_input: | |
| video = cv2.VideoCapture(args.video_input) | |
| vid_frames = [] | |
| while video.isOpened(): | |
| success, frame = video.read() | |
| if success: | |
| vid_frames.append(frame) | |
| else: | |
| break | |
| start_time = time.time() | |
| with autocast(): | |
| predictions, visualized_output = demo.run_on_video(vid_frames) | |
| logger.info( | |
| "detected {} instances per frame in {:.2f}s".format( | |
| len(predictions["pred_scores"]), time.time() - start_time | |
| ) | |
| ) | |
| if args.output: | |
| if args.save_frames: | |
| for idx, _vis_output in enumerate(visualized_output): | |
| out_filename = os.path.join(args.output, f"{idx}.jpg") | |
| _vis_output.save(out_filename) | |
| H, W = visualized_output[0].height, visualized_output[0].width | |
| cap = cv2.VideoCapture(-1) | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(os.path.join(args.output, "visualization.mp4"), fourcc, 10.0, (W, H), True) | |
| for _vis_output in visualized_output: | |
| frame = _vis_output.get_image()[:, :, ::-1] | |
| out.write(frame) | |
| cap.release() | |
| out.release() | |