Spaces:
Runtime error
Runtime error
File size: 6,850 Bytes
b689891 595b5e1 a495cca 3032303 595b5e1 a495cca 595b5e1 a495cca b689891 a495cca b689891 a495cca 595b5e1 b689891 a495cca b689891 a495cca b689891 595b5e1 a495cca 595b5e1 a495cca 595b5e1 b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca ef2e31e b689891 a495cca 7243569 a495cca 632eedb b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca b689891 a495cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# from fastapi import FastAPI, Request, Form, UploadFile, File
# from fastapi.templating import Jinja2Templates
# from fastapi.responses import HTMLResponse, RedirectResponse
# from fastapi.staticfiles import StaticFiles
# from dotenv import load_dotenv
# import os, io
# from PIL import Image
# import markdown
# import google.generativeai as genai
# # Load environment variable
# load_dotenv()
# API_KEY = os.getenv("GOOGLE_API_KEY")
# genai.configure(api_key=API_KEY)
# app = FastAPI()
# templates = Jinja2Templates(directory="templates")
# app.mount("/static", StaticFiles(directory="static"), name="static")
# model = genai.GenerativeModel('gemini-2.0-flash')
# # Create a global chat session
# chat = None
# chat_history = []
# @app.get("/", response_class=HTMLResponse)
# async def root(request: Request):
# return templates.TemplateResponse("index.html", {
# "request": request,
# "chat_history": chat_history,
# })
# @app.post("/", response_class=HTMLResponse)
# async def handle_input(
# request: Request,
# user_input: str = Form(...),
# image: UploadFile = File(None)
# ):
# global chat, chat_history
# # Initialize chat session if needed
# if chat is None:
# chat = model.start_chat(history=[])
# parts = []
# if user_input:
# parts.append(user_input)
# # For display in the UI
# user_message = user_input
# if image and image.content_type.startswith("image/"):
# data = await image.read()
# try:
# img = Image.open(io.BytesIO(data))
# parts.append(img)
# user_message += " [Image uploaded]" # Indicate image in chat history
# except Exception as e:
# chat_history.append({
# "role": "model",
# "content": markdown.markdown(f"**Error loading image:** {e}")
# })
# return RedirectResponse("/", status_code=303)
# # Store user message for display
# chat_history.append({"role": "user", "content": user_message})
# try:
# # Send message to Gemini model
# resp = chat.send_message(parts)
# # Add model response to history
# raw = resp.text
# chat_history.append({"role": "model", "content": raw})
# except Exception as e:
# err = f"**Error:** {e}"
# chat_history.append({
# "role": "model",
# "content": markdown.markdown(err)
# })
# # Post-Redirect-Get
# return RedirectResponse("/", status_code=303)
# # Clear chat history and start fresh
# @app.post("/new")
# async def new_chat():
# global chat, chat_history
# chat = None
# chat_history.clear()
# return RedirectResponse("/", status_code=303)
import os
import io
import streamlit as st
from dotenv import load_dotenv
from PIL import Image
import google.generativeai as genai
from langgraph.graph import StateGraph, END
from typing import TypedDict, List, Union
# ---------------------------
# Load API Key
# ---------------------------
load_dotenv()
API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=API_KEY)
model = genai.GenerativeModel("gemini-2.0-flash")
# ---------------------------
# State Definition
# ---------------------------
class ChatState(TypedDict):
user_input: str
image: Union[Image.Image, None]
raw_response: str
final_response: str
chat_history: List[dict]
# ---------------------------
# LangGraph Nodes
# ---------------------------
def input_node(state: ChatState) -> ChatState:
return state
def processing_node(state: ChatState) -> ChatState:
parts = [state["user_input"]]
if state["image"]:
parts.append(state["image"])
try:
chat = model.start_chat(history=[])
resp = chat.send_message(parts)
state["raw_response"] = resp.text
except Exception as e:
state["raw_response"] = f"Error: {e}"
return state
def checking_node(state: ChatState) -> ChatState:
raw = state["raw_response"]
# Remove unnecessary lines from Gemini responses
if raw.startswith("Sure!") or "The image shows" in raw:
lines = raw.split("\n")
filtered = [
line for line in lines
if not line.startswith("Sure!") and "The image shows" not in line
]
final = "\n".join(filtered).strip()
state["final_response"] = final
else:
state["final_response"] = raw
# Save to session chat history
st.session_state.chat_history.append({"role": "user", "content": state["user_input"]})
st.session_state.chat_history.append({"role": "model", "content": state["final_response"]})
return state
# ---------------------------
# Build the LangGraph
# ---------------------------
builder = StateGraph(ChatState)
builder.add_node("input", input_node)
builder.add_node("processing", processing_node)
builder.add_node("checking", checking_node)
builder.set_entry_point("input")
builder.add_edge("input", "processing")
builder.add_edge("processing", "checking")
builder.add_edge("checking", END)
graph = builder.compile()
# ---------------------------
# Streamlit UI Setup
# ---------------------------
st.set_page_config(page_title="Math Chatbot", layout="centered")
st.title("Math Chatbot")
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Display chat history
for msg in st.session_state.chat_history:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# ---------------------------
# Sidebar
# ---------------------------
with st.sidebar:
st.header("Options")
if st.button("New Chat"):
st.session_state.chat_history = []
st.rerun()
# ---------------------------
# Chat Input Form
# ---------------------------
with st.form("chat_form", clear_on_submit=True):
user_input = st.text_input("Your message:", placeholder="Ask your math problem here")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
submitted = st.form_submit_button("Send")
if submitted:
# Load image safely
image = None
if uploaded_file:
try:
image = Image.open(io.BytesIO(uploaded_file.read()))
except Exception as e:
st.error(f"Error loading image: {e}")
st.stop()
# Prepare state
input_state = {
"user_input": user_input,
"image": image,
"raw_response": "",
"final_response": "",
"chat_history": st.session_state.chat_history,
}
# Run LangGraph
output = graph.invoke(input_state)
# Show model response
with st.chat_message("model"):
st.markdown(output["final_response"])
|