Create App.py
Browse files
App.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from mamba_model import MambaModel
|
| 4 |
+
|
| 5 |
+
# Load the model
|
| 6 |
+
model = MambaModel.from_pretrained(pretrained_model_name="Zyphra/BlackMamba-2.8B")
|
| 7 |
+
model = model.cuda().half()
|
| 8 |
+
|
| 9 |
+
# Define the function to generate output
|
| 10 |
+
def generate_output(input_text):
|
| 11 |
+
# Convert the input text (comma-separated numbers) to a list of integers
|
| 12 |
+
try:
|
| 13 |
+
input_ids = [int(x.strip()) for x in input_text.split(",")]
|
| 14 |
+
inputs = torch.tensor(input_ids).cuda().long().unsqueeze(0)
|
| 15 |
+
|
| 16 |
+
# Run the model and get output
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
out = model(inputs)
|
| 19 |
+
|
| 20 |
+
# Convert output to a human-readable format
|
| 21 |
+
return out.cpu().numpy().tolist()
|
| 22 |
+
except Exception as e:
|
| 23 |
+
return f"Error: {str(e)}"
|
| 24 |
+
|
| 25 |
+
# Set up the Gradio interface
|
| 26 |
+
input_component = gr.Textbox(label="Input IDs (comma-separated)", placeholder="Enter input IDs like: 1, 2")
|
| 27 |
+
output_component = gr.Textbox(label="Output")
|
| 28 |
+
|
| 29 |
+
iface = gr.Interface(fn=generate_output, inputs=input_component, outputs=output_component, title="BlackMamba Model")
|
| 30 |
+
|
| 31 |
+
# Launch the interface
|
| 32 |
+
if __name__ == "__main__":
|
| 33 |
+
iface.launch()
|