Yongkang ZOU
commited on
Commit
·
bfdb8e9
1
Parent(s):
4e6c049
update tools
Browse files- agent.py +209 -1
- requirements.txt +2 -1
agent.py
CHANGED
|
@@ -16,6 +16,19 @@ from langchain_community.vectorstores import SupabaseVectorStore
|
|
| 16 |
from langchain_openai import ChatOpenAI
|
| 17 |
from langchain_core.documents import Document
|
| 18 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
load_dotenv()
|
| 21 |
|
|
@@ -47,6 +60,28 @@ def modulus(a: int, b: int) -> int:
|
|
| 47 |
"""Get remainder of a divided by b."""
|
| 48 |
return a % b
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
@tool
|
| 51 |
def wiki_search(query: str) -> str:
|
| 52 |
"""Search Wikipedia for a query (max 2 results)."""
|
|
@@ -80,10 +115,183 @@ def read_excel_file(path: str) -> str:
|
|
| 80 |
return content.strip()
|
| 81 |
except Exception as e:
|
| 82 |
return f"Error reading Excel file: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# ------------------- SYSTEM PROMPT -------------------
|
| 89 |
system_prompt_path = "system_prompt.txt"
|
|
|
|
| 16 |
from langchain_openai import ChatOpenAI
|
| 17 |
from langchain_core.documents import Document
|
| 18 |
import json
|
| 19 |
+
import pdfplumber
|
| 20 |
+
import pandas as pd
|
| 21 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 22 |
+
from PIL import Image
|
| 23 |
+
import torch
|
| 24 |
+
import cmath
|
| 25 |
+
from code_interpreter import CodeInterpreter
|
| 26 |
+
import uuid
|
| 27 |
+
import tempfile
|
| 28 |
+
import requests
|
| 29 |
+
from urllib.parse import urlparse
|
| 30 |
+
from typing import Optional
|
| 31 |
+
|
| 32 |
|
| 33 |
load_dotenv()
|
| 34 |
|
|
|
|
| 60 |
"""Get remainder of a divided by b."""
|
| 61 |
return a % b
|
| 62 |
|
| 63 |
+
@tool
|
| 64 |
+
def square_root(a: float) -> float | complex:
|
| 65 |
+
"""
|
| 66 |
+
Get the square root of a number.
|
| 67 |
+
Args:
|
| 68 |
+
a (float): the number to get the square root of
|
| 69 |
+
"""
|
| 70 |
+
if a >= 0:
|
| 71 |
+
return a**0.5
|
| 72 |
+
return cmath.sqrt(a)
|
| 73 |
+
|
| 74 |
+
@tool
|
| 75 |
+
def power(a: float, b: float) -> float:
|
| 76 |
+
"""
|
| 77 |
+
Get the power of two numbers.
|
| 78 |
+
Args:
|
| 79 |
+
a (float): the first number
|
| 80 |
+
b (float): the second number
|
| 81 |
+
"""
|
| 82 |
+
return a**b
|
| 83 |
+
|
| 84 |
+
|
| 85 |
@tool
|
| 86 |
def wiki_search(query: str) -> str:
|
| 87 |
"""Search Wikipedia for a query (max 2 results)."""
|
|
|
|
| 115 |
return content.strip()
|
| 116 |
except Exception as e:
|
| 117 |
return f"Error reading Excel file: {str(e)}"
|
| 118 |
+
|
| 119 |
+
@tool
|
| 120 |
+
def extract_text_from_pdf(path: str) -> str:
|
| 121 |
+
"""Extract text from a PDF file given its local path."""
|
| 122 |
+
try:
|
| 123 |
+
text = ""
|
| 124 |
+
with pdfplumber.open(path) as pdf:
|
| 125 |
+
for page in pdf.pages[:5]: # 限前5页,避免过大
|
| 126 |
+
page_text = page.extract_text()
|
| 127 |
+
if page_text:
|
| 128 |
+
text += page_text + "\n\n"
|
| 129 |
+
return text.strip() if text else "No text extracted from PDF."
|
| 130 |
+
except Exception as e:
|
| 131 |
+
return f"Error reading PDF: {str(e)}"
|
| 132 |
+
|
| 133 |
+
# 初始化模型(首次加载可能稍慢)
|
| 134 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 135 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 136 |
+
|
| 137 |
+
@tool
|
| 138 |
+
def blip_image_caption(image_path: str) -> str:
|
| 139 |
+
"""Generate a description for an image using BLIP."""
|
| 140 |
+
try:
|
| 141 |
+
image = Image.open(image_path).convert("RGB")
|
| 142 |
+
inputs = processor(image, return_tensors="pt")
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
out = model.generate(**inputs)
|
| 145 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 146 |
+
return caption
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return f"Failed to process image with BLIP: {str(e)}"
|
| 149 |
+
|
| 150 |
+
@tool
|
| 151 |
+
def execute_code_multilang(code: str, language: str = "python") -> str:
|
| 152 |
+
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
|
| 153 |
+
Args:
|
| 154 |
+
code (str): The source code to execute.
|
| 155 |
+
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
|
| 156 |
+
Returns:
|
| 157 |
+
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
|
| 158 |
+
"""
|
| 159 |
+
supported_languages = ["python", "bash", "sql", "c", "java"]
|
| 160 |
+
language = language.lower()
|
| 161 |
+
interpreter_instance = CodeInterpreter()
|
| 162 |
+
|
| 163 |
+
if language not in supported_languages:
|
| 164 |
+
return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
|
| 165 |
+
|
| 166 |
+
result = interpreter_instance.execute_code(code, language=language)
|
| 167 |
+
|
| 168 |
+
response = []
|
| 169 |
+
|
| 170 |
+
if result["status"] == "success":
|
| 171 |
+
response.append(f"✅ Code executed successfully in **{language.upper()}**")
|
| 172 |
+
|
| 173 |
+
if result.get("stdout"):
|
| 174 |
+
response.append(
|
| 175 |
+
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if result.get("stderr"):
|
| 179 |
+
response.append(
|
| 180 |
+
"\n**Standard Error (if any):**\n```\n"
|
| 181 |
+
+ result["stderr"].strip()
|
| 182 |
+
+ "\n```"
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
if result.get("result") is not None:
|
| 186 |
+
response.append(
|
| 187 |
+
"\n**Execution Result:**\n```\n"
|
| 188 |
+
+ str(result["result"]).strip()
|
| 189 |
+
+ "\n```"
|
| 190 |
+
)
|
| 191 |
|
| 192 |
+
if result.get("dataframes"):
|
| 193 |
+
for df_info in result["dataframes"]:
|
| 194 |
+
response.append(
|
| 195 |
+
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
|
| 196 |
+
)
|
| 197 |
+
df_preview = pd.DataFrame(df_info["head"])
|
| 198 |
+
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
|
| 199 |
|
| 200 |
+
if result.get("plots"):
|
| 201 |
+
response.append(
|
| 202 |
+
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
else:
|
| 206 |
+
response.append(f"❌ Code execution failed in **{language.upper()}**")
|
| 207 |
+
if result.get("stderr"):
|
| 208 |
+
response.append(
|
| 209 |
+
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
|
| 210 |
+
)
|
| 211 |
|
| 212 |
+
return "\n".join(response)
|
| 213 |
+
|
| 214 |
+
@tool
|
| 215 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
| 216 |
+
"""
|
| 217 |
+
Save content to a file and return the path.
|
| 218 |
+
Args:
|
| 219 |
+
content (str): the content to save to the file
|
| 220 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
| 221 |
+
"""
|
| 222 |
+
temp_dir = tempfile.gettempdir()
|
| 223 |
+
if filename is None:
|
| 224 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
| 225 |
+
filepath = temp_file.name
|
| 226 |
+
else:
|
| 227 |
+
filepath = os.path.join(temp_dir, filename)
|
| 228 |
+
|
| 229 |
+
with open(filepath, "w") as f:
|
| 230 |
+
f.write(content)
|
| 231 |
+
|
| 232 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
@tool
|
| 236 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
| 237 |
+
"""
|
| 238 |
+
Download a file from a URL and save it to a temporary location.
|
| 239 |
+
Args:
|
| 240 |
+
url (str): the URL of the file to download.
|
| 241 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
| 242 |
+
"""
|
| 243 |
+
try:
|
| 244 |
+
# Parse URL to get filename if not provided
|
| 245 |
+
if not filename:
|
| 246 |
+
path = urlparse(url).path
|
| 247 |
+
filename = os.path.basename(path)
|
| 248 |
+
if not filename:
|
| 249 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
| 250 |
+
|
| 251 |
+
# Create temporary file
|
| 252 |
+
temp_dir = tempfile.gettempdir()
|
| 253 |
+
filepath = os.path.join(temp_dir, filename)
|
| 254 |
+
|
| 255 |
+
# Download the file
|
| 256 |
+
response = requests.get(url, stream=True)
|
| 257 |
+
response.raise_for_status()
|
| 258 |
+
|
| 259 |
+
# Save the file
|
| 260 |
+
with open(filepath, "wb") as f:
|
| 261 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 262 |
+
f.write(chunk)
|
| 263 |
+
|
| 264 |
+
return f"File downloaded to {filepath}. You can read this file to process its contents."
|
| 265 |
+
except Exception as e:
|
| 266 |
+
return f"Error downloading file: {str(e)}"
|
| 267 |
+
|
| 268 |
+
@tool
|
| 269 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
| 270 |
+
"""
|
| 271 |
+
Analyze a CSV file using pandas and answer a question about it.
|
| 272 |
+
Args:
|
| 273 |
+
file_path (str): the path to the CSV file.
|
| 274 |
+
query (str): Question about the data
|
| 275 |
+
"""
|
| 276 |
+
try:
|
| 277 |
+
# Read the CSV file
|
| 278 |
+
df = pd.read_csv(file_path)
|
| 279 |
+
|
| 280 |
+
# Run various analyses based on the query
|
| 281 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 282 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 283 |
+
|
| 284 |
+
# Add summary statistics
|
| 285 |
+
result += "Summary statistics:\n"
|
| 286 |
+
result += str(df.describe())
|
| 287 |
+
|
| 288 |
+
return result
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
return f"Error analyzing CSV file: {str(e)}"
|
| 292 |
+
tools = [multiply, add, subtract, divide, modulus,
|
| 293 |
+
wiki_search, web_search, arvix_search, read_excel_file, extract_text_from_pdf,
|
| 294 |
+
blip_image_caption, execute_code_multilang, save_and_read_file, download_file_from_url, analyze_csv_file]
|
| 295 |
|
| 296 |
# ------------------- SYSTEM PROMPT -------------------
|
| 297 |
system_prompt_path = "system_prompt.txt"
|
requirements.txt
CHANGED
|
@@ -24,4 +24,5 @@ beautifulsoup4
|
|
| 24 |
transformers
|
| 25 |
torch
|
| 26 |
torchvision
|
| 27 |
-
pillow
|
|
|
|
|
|
| 24 |
transformers
|
| 25 |
torch
|
| 26 |
torchvision
|
| 27 |
+
pillow
|
| 28 |
+
matplotlib
|