update the UI
Browse files- app.py +84 -56
- requirements.txt +1 -1
- visualization.py +9 -9
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import csv
|
| 2 |
import sys
|
| 3 |
import pickle
|
|
@@ -7,6 +8,7 @@ import gradio as gr
|
|
| 7 |
import gdown
|
| 8 |
import torchvision
|
| 9 |
from torchvision.datasets import ImageFolder
|
|
|
|
| 10 |
|
| 11 |
from SimSearch import FaissCosineNeighbors, SearchableTrainingSet
|
| 12 |
from ExtractEmbedding import QueryToEmbedding
|
|
@@ -17,42 +19,42 @@ csv.field_size_limit(sys.maxsize)
|
|
| 17 |
|
| 18 |
concat = lambda x: np.concatenate(x, axis=0)
|
| 19 |
|
| 20 |
-
# Embeddings
|
| 21 |
-
gdown.cached_download(
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# embeddings
|
| 29 |
-
# gdown.download(id="116CiA_cXciGSl72tbAUDoN-f1B9Frp89")
|
| 30 |
-
|
| 31 |
-
# labels
|
| 32 |
-
gdown.download(id="1SDtq6ap7LPPpYfLbAxaMGGmj0EAV_m_e")
|
| 33 |
-
|
| 34 |
-
# CUB training set
|
| 35 |
-
gdown.cached_download(
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# EXTRACT training set
|
| 43 |
-
torchvision.datasets.utils.extract_archive(
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
# CHM Weights
|
| 50 |
-
gdown.cached_download(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
)
|
| 56 |
|
| 57 |
|
| 58 |
# Caluclate Accuracy
|
|
@@ -72,7 +74,7 @@ id_to_bird_name = {
|
|
| 72 |
}
|
| 73 |
|
| 74 |
|
| 75 |
-
def search(query_image, searcher=searcher):
|
| 76 |
query_embedding = QueryToEmbedding(query_image)
|
| 77 |
scores, indices, labels = searcher.search(query_embedding, k=50)
|
| 78 |
|
|
@@ -99,27 +101,53 @@ def search(query_image, searcher=searcher):
|
|
| 99 |
query_image, kNN_results, support, training_folder
|
| 100 |
)
|
| 101 |
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
import csv
|
| 3 |
import sys
|
| 4 |
import pickle
|
|
|
|
| 8 |
import gdown
|
| 9 |
import torchvision
|
| 10 |
from torchvision.datasets import ImageFolder
|
| 11 |
+
from PIL import Image
|
| 12 |
|
| 13 |
from SimSearch import FaissCosineNeighbors, SearchableTrainingSet
|
| 14 |
from ExtractEmbedding import QueryToEmbedding
|
|
|
|
| 19 |
|
| 20 |
concat = lambda x: np.concatenate(x, axis=0)
|
| 21 |
|
| 22 |
+
# # Embeddings
|
| 23 |
+
# gdown.cached_download(
|
| 24 |
+
# url="https://static.taesiri.com/chm-corr/embeddings.pickle",
|
| 25 |
+
# path="./embeddings.pickle",
|
| 26 |
+
# quiet=False,
|
| 27 |
+
# md5="002b2a7f5c80d910b9cc740c2265f058",
|
| 28 |
+
# )
|
| 29 |
+
|
| 30 |
+
# # embeddings
|
| 31 |
+
# # gdown.download(id="116CiA_cXciGSl72tbAUDoN-f1B9Frp89")
|
| 32 |
+
|
| 33 |
+
# # labels
|
| 34 |
+
# gdown.download(id="1SDtq6ap7LPPpYfLbAxaMGGmj0EAV_m_e")
|
| 35 |
+
|
| 36 |
+
# # CUB training set
|
| 37 |
+
# gdown.cached_download(
|
| 38 |
+
# url="https://static.taesiri.com/chm-corr/CUB_train.zip",
|
| 39 |
+
# path="./CUB_train.zip",
|
| 40 |
+
# quiet=False,
|
| 41 |
+
# md5="1bd99e73b2fea8e4c2ebcb0e7722f1b1",
|
| 42 |
+
# )
|
| 43 |
+
|
| 44 |
+
# # EXTRACT training set
|
| 45 |
+
# torchvision.datasets.utils.extract_archive(
|
| 46 |
+
# from_path="CUB_train.zip",
|
| 47 |
+
# to_path="data/",
|
| 48 |
+
# remove_finished=False,
|
| 49 |
+
# )
|
| 50 |
+
|
| 51 |
+
# # CHM Weights
|
| 52 |
+
# gdown.cached_download(
|
| 53 |
+
# url="https://static.taesiri.com/chm-corr/pas_psi.pt",
|
| 54 |
+
# path="pas_psi.pt",
|
| 55 |
+
# quiet=False,
|
| 56 |
+
# md5="6b7b4d7bad7f89600fac340d6aa7708b",
|
| 57 |
+
# )
|
| 58 |
|
| 59 |
|
| 60 |
# Caluclate Accuracy
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
|
| 77 |
+
def search(query_image, draw_arcs, searcher=searcher):
|
| 78 |
query_embedding = QueryToEmbedding(query_image)
|
| 79 |
scores, indices, labels = searcher.search(query_embedding, k=50)
|
| 80 |
|
|
|
|
| 101 |
query_image, kNN_results, support, training_folder
|
| 102 |
)
|
| 103 |
|
| 104 |
+
fig = plot_from_reranker_output(chm_output, draw_arcs=draw_arcs)
|
| 105 |
|
| 106 |
+
# Resize the output
|
| 107 |
|
| 108 |
+
img_buf = io.BytesIO()
|
| 109 |
+
fig.savefig(img_buf, format="jpg")
|
| 110 |
+
image = Image.open(img_buf)
|
| 111 |
+
width, height = image.size
|
| 112 |
+
new_width = width
|
| 113 |
+
new_height = height
|
| 114 |
|
| 115 |
+
left = (width - new_width) / 2
|
| 116 |
+
top = (height - new_height) / 2
|
| 117 |
+
right = (width + new_width) / 2
|
| 118 |
+
bottom = (height + new_height) / 2
|
| 119 |
+
|
| 120 |
+
viz_image = image.crop((left + 540, top + 40, right - 492, bottom - 100))
|
| 121 |
+
|
| 122 |
+
return viz_image, predicted_labels
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
blocks = gr.Blocks()
|
| 126 |
+
|
| 127 |
+
with blocks:
|
| 128 |
+
gr.Markdown(""" # CHM-Corr DEMO""")
|
| 129 |
+
gr.Markdown(""" ### Parameters: N=50, k=20 - Using ResNet50 features""")
|
| 130 |
+
|
| 131 |
+
# with gr.Row():
|
| 132 |
+
input_image = gr.Image(type="filepath")
|
| 133 |
+
with gr.Column():
|
| 134 |
+
arcs_checkbox = gr.Checkbox(label="Draw Arcs")
|
| 135 |
+
run_btn = gr.Button("Classify")
|
| 136 |
+
|
| 137 |
+
# with gr.Column():
|
| 138 |
+
gr.Markdown(""" ### CHM-Corr Output """)
|
| 139 |
+
viz_plot = gr.Image(type="pil")
|
| 140 |
+
gr.Markdown(""" ### kNN Predicted Labels """)
|
| 141 |
+
predicted_labels = gr.Label(label="kNN Prediction")
|
| 142 |
+
|
| 143 |
+
run_btn.click(
|
| 144 |
+
search,
|
| 145 |
+
inputs=[input_image, arcs_checkbox],
|
| 146 |
+
outputs=[viz_plot, predicted_labels],
|
| 147 |
+
)
|
| 148 |
|
| 149 |
if __name__ == "__main__":
|
| 150 |
+
blocks.launch(
|
| 151 |
+
debug=True,
|
| 152 |
+
enable_queue=True,
|
| 153 |
+
)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
faiss-cpu==1.7.2
|
| 2 |
gdown
|
| 3 |
gradio
|
| 4 |
numpy
|
|
@@ -8,3 +7,4 @@ torchvision
|
|
| 8 |
tqdm
|
| 9 |
tensorboardX==2.5
|
| 10 |
matplotlib
|
|
|
|
|
|
|
|
|
| 1 |
gdown
|
| 2 |
gradio
|
| 3 |
numpy
|
|
|
|
| 7 |
tqdm
|
| 8 |
tensorboardX==2.5
|
| 9 |
matplotlib
|
| 10 |
+
faiss-cpu==1.7.2
|
visualization.py
CHANGED
|
@@ -261,14 +261,14 @@ def plot_from_reranker_output(reranker_output, draw_box=True, draw_arcs=True):
|
|
| 261 |
color="black",
|
| 262 |
fontsize=22,
|
| 263 |
)
|
| 264 |
-
fig.text(
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
)
|
| 273 |
|
| 274 |
return fig
|
|
|
|
| 261 |
color="black",
|
| 262 |
fontsize=22,
|
| 263 |
)
|
| 264 |
+
# fig.text(
|
| 265 |
+
# 0.8,
|
| 266 |
+
# 0.95,
|
| 267 |
+
# f"KNN: {reranker_output['knn-prediction']}",
|
| 268 |
+
# ha="right",
|
| 269 |
+
# va="bottom",
|
| 270 |
+
# color="black",
|
| 271 |
+
# fontsize=22,
|
| 272 |
+
# )
|
| 273 |
|
| 274 |
return fig
|