Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,15 +6,24 @@ import gradio as gr
|
|
| 6 |
device = "cpu"
|
| 7 |
print("Running on CPU")
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Create the Gradio interface
|
| 20 |
demo = gr.Interface(
|
|
|
|
| 6 |
device = "cpu"
|
| 7 |
print("Running on CPU")
|
| 8 |
|
| 9 |
+
|
| 10 |
+
# Load the tiny Whisper model
|
| 11 |
+
model = whisper.load_model("base")
|
| 12 |
+
|
| 13 |
+
# Load the text summarization model from Hugging Face
|
| 14 |
+
summarizer = pipeline(task="summarization", model="facebook/bart-large-cnn")
|
| 15 |
+
|
| 16 |
+
# Function to transcribe and summarize the audio file
|
| 17 |
+
def transcribe_and_summarize(audio):
|
| 18 |
+
# Step 1: Transcribe the audio using Whisper
|
| 19 |
+
transcription_result = whisper_model.transcribe(audio)
|
| 20 |
+
transcription = transcription_result['text']
|
| 21 |
+
|
| 22 |
+
# Step 2: Summarize the transcription
|
| 23 |
+
summary = summarizer(transcription, min_length=10, max_length=100)
|
| 24 |
+
summary_text = summary[0]['summary_text']
|
| 25 |
+
|
| 26 |
+
return transcription, summary_text
|
| 27 |
|
| 28 |
# Create the Gradio interface
|
| 29 |
demo = gr.Interface(
|