Spaces:
Runtime error
Runtime error
Commit
·
9b1cba9
1
Parent(s):
9fec676
gen
Browse files- app.py +16 -3
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
| 3 |
import torch
|
| 4 |
from torch.distributions.categorical import Categorical
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
|
| 7 |
# Load the model and tokenizer
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
|
@@ -57,8 +58,17 @@ def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
|
| 57 |
|
| 58 |
# Add the generated binder and its PPL to the results list
|
| 59 |
binders_with_ppl.append([generated_binder, ppl_value])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
return binders_with_ppl
|
| 62 |
|
| 63 |
# Define the Gradio interface
|
| 64 |
interface = gr.Interface(
|
|
@@ -67,13 +77,16 @@ interface = gr.Interface(
|
|
| 67 |
gr.Textbox(label="Protein Sequence", info="Enter protein sequence here", type="text"),
|
| 68 |
gr.Slider(3, 50, value=15, label="Peptide Length", step=1, info='Default value is 15'),
|
| 69 |
gr.Slider(1, 10, value=3, label="Top K Value", step=1, info='Default value is 3'),
|
| 70 |
-
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders",
|
| 71 |
],
|
| 72 |
-
outputs=
|
|
|
|
| 73 |
headers=["Binder", "Perplexity"],
|
| 74 |
datatype=["str", "number"],
|
| 75 |
col_count=(2, "fixed")
|
| 76 |
),
|
|
|
|
|
|
|
| 77 |
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
| 78 |
)
|
| 79 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from torch.distributions.categorical import Categorical
|
| 5 |
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
|
| 8 |
# Load the model and tokenizer
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
|
|
|
| 58 |
|
| 59 |
# Add the generated binder and its PPL to the results list
|
| 60 |
binders_with_ppl.append([generated_binder, ppl_value])
|
| 61 |
+
|
| 62 |
+
# Convert the list of lists to a pandas dataframe
|
| 63 |
+
df = pd.DataFrame(binders_with_ppl, columns=["Binder", "Perplexity"])
|
| 64 |
+
|
| 65 |
+
# Save the dataframe to a CSV file
|
| 66 |
+
output_filename = "output.csv"
|
| 67 |
+
df.to_csv(output_filename, index=False)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
return binders_with_ppl, output_filename
|
| 71 |
|
|
|
|
| 72 |
|
| 73 |
# Define the Gradio interface
|
| 74 |
interface = gr.Interface(
|
|
|
|
| 77 |
gr.Textbox(label="Protein Sequence", info="Enter protein sequence here", type="text"),
|
| 78 |
gr.Slider(3, 50, value=15, label="Peptide Length", step=1, info='Default value is 15'),
|
| 79 |
gr.Slider(1, 10, value=3, label="Top K Value", step=1, info='Default value is 3'),
|
| 80 |
+
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=1)
|
| 81 |
],
|
| 82 |
+
outputs=[
|
| 83 |
+
gr.Dataframe(
|
| 84 |
headers=["Binder", "Perplexity"],
|
| 85 |
datatype=["str", "number"],
|
| 86 |
col_count=(2, "fixed")
|
| 87 |
),
|
| 88 |
+
gr.outputs.File(label="Download CSV")
|
| 89 |
+
],
|
| 90 |
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
| 91 |
)
|
| 92 |
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
transformers
|
| 2 |
gradio
|
| 3 |
torch
|
| 4 |
-
numpy
|
|
|
|
|
|
| 1 |
transformers
|
| 2 |
gradio
|
| 3 |
torch
|
| 4 |
+
numpy
|
| 5 |
+
pandas
|