GestureLSM / dataloaders /beat_dataset_new.py
Tharun156's picture
Upload 149 files
f7400bf verified
import os
import pickle
import math
import shutil
import numpy as np
import lmdb as lmdb
import textgrid as tg
import pandas as pd
import torch
import glob
import json
from termcolor import colored
from loguru import logger
from collections import defaultdict
from torch.utils.data import Dataset
import torch.distributed as dist
import pickle
import smplx
from .utils.audio_features import AudioProcessor
from .utils.other_tools import MultiLMDBManager
from .utils.motion_rep_transfer import process_smplx_motion
from .utils.mis_features import process_semantic_data, process_emotion_data
from .utils.text_features import process_word_data
from .utils.data_sample import sample_from_clip
from .utils import rotation_conversions as rc
class CustomDataset(Dataset):
def __init__(self, args, loader_type, build_cache=True):
self.args = args
self.loader_type = loader_type
self.rank = dist.get_rank()
self.ori_stride = self.args.stride
self.ori_length = self.args.pose_length
# Initialize basic parameters
self.ori_stride = self.args.stride
self.ori_length = self.args.pose_length
self.alignment = [0,0] # for trinity
# Initialize SMPLX model
self.smplx = smplx.create(
self.args.data_path_1+"smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).cuda().eval()
self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
# Load and process split rules
self._process_split_rules()
# Initialize data directories and lengths
self._init_data_paths()
# Build or load cache
self._init_cache(build_cache)
def _process_split_rules(self):
"""Process dataset split rules."""
split_rule = pd.read_csv(self.args.data_path+"train_test_split.csv")
self.selected_file = split_rule.loc[
(split_rule['type'] == self.loader_type) &
(split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))
]
if self.args.additional_data and self.loader_type == 'train':
split_b = split_rule.loc[
(split_rule['type'] == 'additional') &
(split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))
]
self.selected_file = pd.concat([self.selected_file, split_b])
if self.selected_file.empty:
logger.warning(f"{self.loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
self.selected_file = split_rule.loc[
(split_rule['type'] == 'train') &
(split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))
]
self.selected_file = self.selected_file.iloc[0:8]
def _init_data_paths(self):
"""Initialize data directories and lengths."""
self.data_dir = self.args.data_path
if self.loader_type == "test":
self.args.multi_length_training = [1.0]
self.max_length = int(self.args.pose_length * self.args.multi_length_training[-1])
self.max_audio_pre_len = math.floor(self.args.pose_length / self.args.pose_fps * self.args.audio_sr)
if self.max_audio_pre_len > self.args.test_length * self.args.audio_sr:
self.max_audio_pre_len = self.args.test_length * self.args.audio_sr
if self.args.test_clip and self.loader_type == "test":
self.preloaded_dir = self.args.root_path + self.args.cache_path + self.loader_type + "_clip" + f"/{self.args.pose_rep}_cache"
else:
self.preloaded_dir = self.args.root_path + self.args.cache_path + self.loader_type + f"/{self.args.pose_rep}_cache"
def _init_cache(self, build_cache):
"""Initialize or build cache."""
self.lmdb_envs = {}
self.mapping_data = None
if build_cache and self.rank == 0:
self.build_cache(self.preloaded_dir)
self.load_db_mapping()
def build_cache(self, preloaded_dir):
"""Build the dataset cache."""
logger.info(f"Audio bit rate: {self.args.audio_fps}")
logger.info("Reading data '{}'...".format(self.data_dir))
logger.info("Creating the dataset cache...")
if self.args.new_cache and os.path.exists(preloaded_dir):
shutil.rmtree(preloaded_dir)
if os.path.exists(preloaded_dir):
# if the dir is empty, that means we still need to build the cache
if not os.listdir(preloaded_dir):
self.cache_generation(
preloaded_dir,
self.args.disable_filtering,
self.args.clean_first_seconds,
self.args.clean_final_seconds,
is_test=False
)
else:
logger.info("Found the cache {}".format(preloaded_dir))
elif self.loader_type == "test":
self.cache_generation(preloaded_dir, True, 0, 0, is_test=True)
else:
self.cache_generation(
preloaded_dir,
self.args.disable_filtering,
self.args.clean_first_seconds,
self.args.clean_final_seconds,
is_test=False
)
def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
"""Generate cache for the dataset."""
if not os.path.exists(out_lmdb_dir):
os.makedirs(out_lmdb_dir)
self.audio_processor = AudioProcessor(layer=self.args.n_layer, use_distill=self.args.use_distill)
# Initialize the multi-LMDB manager
lmdb_manager = MultiLMDBManager(out_lmdb_dir, max_db_size=10*1024*1024*1024)
self.n_out_samples = 0
n_filtered_out = defaultdict(int)
for index, file_name in self.selected_file.iterrows():
f_name = file_name["id"]
ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
pose_file = os.path.join(self.data_dir, self.args.pose_rep, f_name + ext)
# Process data
data = self._process_file_data(f_name, pose_file, ext)
if data is None:
continue
# Sample from clip
filtered_result, self.n_out_samples = sample_from_clip(
lmdb_manager=lmdb_manager,
audio_file=pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav"),
audio_each_file=data['audio_tensor'],
high_each_file=data['high_level'],
low_each_file=data['low_level'],
pose_each_file=data['pose'],
rep15d_each_file=data['rep15d'],
trans_each_file=data['trans'],
trans_v_each_file=data['trans_v'],
shape_each_file=data['shape'],
facial_each_file=data['facial'],
aligned_text_each_file=data['aligned_text'],
word_each_file=data['word'] if self.args.word_rep is not None else None,
vid_each_file=data['vid'],
emo_each_file=data['emo'],
sem_each_file=data['sem'],
intention_each_file=data['intention'] if data['intention'] is not None else None,
audio_onset_each_file=data['audio_onset'] if self.args.onset_rep else None,
args=self.args,
ori_stride=self.ori_stride,
ori_length=self.ori_length,
disable_filtering=disable_filtering,
clean_first_seconds=clean_first_seconds,
clean_final_seconds=clean_final_seconds,
is_test=is_test,
n_out_samples=self.n_out_samples
)
for type_key in filtered_result:
n_filtered_out[type_key] += filtered_result[type_key]
lmdb_manager.close()
def _process_file_data(self, f_name, pose_file, ext):
"""Process all data for a single file."""
data = {
'pose': None, 'trans': None, 'trans_v': None, 'shape': None,
'audio': None, 'facial': None, 'word': None, 'emo': None,
'sem': None, 'vid': None
}
# Process motion data
logger.info(colored(f"# ---- Building cache for Pose {f_name} ---- #", "blue"))
if "smplx" in self.args.pose_rep:
motion_data = process_smplx_motion(pose_file, self.smplx, self.args.pose_fps, self.args.facial_rep)
else:
raise ValueError(f"Unknown pose representation '{self.args.pose_rep}'.")
if motion_data is None:
return None
data.update(motion_data)
# Process speaker ID
if self.args.id_rep is not None:
speaker_id = int(f_name.split("_")[0]) - 1
data['vid'] = np.repeat(np.array(speaker_id).reshape(1, 1), data['pose'].shape[0], axis=0)
else:
data['vid'] = np.array([-1])
# Process audio if needed
if self.args.audio_rep is not None:
audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
audio_data = self.audio_processor.get_wav2vec_from_16k_wav(audio_file, aligned_text=True)
if audio_data is None:
return None
data.update(audio_data)
if getattr(self.args, "onset_rep", False):
audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
onset_data = self.audio_processor.calculate_onset_amplitude(audio_file, data)
if onset_data is None:
return None
data.update(onset_data)
# Process emotion if needed
if self.args.emo_rep is not None:
data = process_emotion_data(f_name, data, self.args)
if data is None:
return None
# Process word data if needed
if self.args.word_rep is not None:
word_file = f"{self.data_dir}{self.args.word_rep}/{f_name}.TextGrid"
data = process_word_data(self.data_dir, word_file, self.args, data, f_name, self.selected_file)
if data is None:
return None
# Process semantic data if needed
if self.args.sem_rep is not None:
sem_file = f"{self.data_dir}{self.args.sem_rep}/{f_name}.txt"
data = process_semantic_data(sem_file, self.args, data, f_name)
if data is None:
return None
return data
def load_db_mapping(self):
"""Load database mapping from file."""
mapping_path = os.path.join(self.preloaded_dir, "sample_db_mapping.pkl")
with open(mapping_path, 'rb') as f:
self.mapping_data = pickle.load(f)
# Update paths from test to test_clip if needed
if self.loader_type == "test" and self.args.test_clip:
updated_paths = []
for path in self.mapping_data['db_paths']:
updated_path = path.replace("test/", "test_clip/")
updated_paths.append(updated_path)
self.mapping_data['db_paths'] = updated_paths
# Re-save the updated mapping_data to the same pickle file
with open(mapping_path, 'wb') as f:
pickle.dump(self.mapping_data, f)
self.n_samples = len(self.mapping_data['mapping'])
def get_lmdb_env(self, db_idx):
"""Get LMDB environment for given database index."""
if db_idx not in self.lmdb_envs:
db_path = self.mapping_data['db_paths'][db_idx]
self.lmdb_envs[db_idx] = lmdb.open(db_path, readonly=True, lock=False)
return self.lmdb_envs[db_idx]
def __len__(self):
"""Return the total number of samples in the dataset."""
return self.n_samples
def __getitem__(self, idx):
"""Get a single sample from the dataset."""
db_idx = self.mapping_data['mapping'][idx]
lmdb_env = self.get_lmdb_env(db_idx)
with lmdb_env.begin(write=False) as txn:
key = "{:008d}".format(idx).encode("ascii")
sample = txn.get(key)
sample = pickle.loads(sample)
tar_pose, in_audio, in_audio_high, in_audio_low, tar_rep15d, in_facial, in_shape, in_aligned_text, in_word, emo, sem, vid, trans, trans_v, intention, audio_name, audio_onset = sample
# Convert data to tensors with appropriate types
processed_data = self._convert_to_tensors(
tar_pose, tar_rep15d, in_audio, in_audio_high, in_audio_low, in_facial, in_shape, in_aligned_text, in_word,
emo, sem, vid, trans, trans_v, intention, audio_onset
)
processed_data['audio_name'] = audio_name
return processed_data
def _convert_to_tensors(self, tar_pose, tar_rep15d, in_audio, in_audio_high, in_audio_low, in_facial, in_shape, in_aligned_text, in_word,
emo, sem, vid, trans, trans_v, intention=None, audio_onset=None):
"""Convert numpy arrays to tensors with appropriate types."""
data = {
'emo': torch.from_numpy(emo).int(),
'sem': torch.from_numpy(sem).float(),
'audio_tensor': torch.from_numpy(in_audio).float(),
'bert_time_aligned': torch.from_numpy(in_aligned_text).float()
}
tar_pose = torch.from_numpy(tar_pose).float()
if self.loader_type == "test":
data.update({
'pose': tar_pose,
'rep15d': torch.from_numpy(tar_rep15d).float(),
'trans': torch.from_numpy(trans).float(),
'trans_v': torch.from_numpy(trans_v).float(),
'facial': torch.from_numpy(in_facial).float(),
'id': torch.from_numpy(vid).float(),
'beta': torch.from_numpy(in_shape).float()
})
else:
data.update({
'pose': tar_pose,
'rep15d': torch.from_numpy(tar_rep15d).reshape((tar_rep15d.shape[0], -1)).float(),
'trans': torch.from_numpy(trans).reshape((trans.shape[0], -1)).float(),
'trans_v': torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float(),
'facial': torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float(),
'id': torch.from_numpy(vid).reshape((vid.shape[0], -1)).float(),
'beta': torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
})
# Handle audio onset
if audio_onset is not None:
data['audio_onset'] = torch.from_numpy(audio_onset).float()
else:
data['audio_onset'] = torch.tensor([-1])
if in_word is not None:
data['word'] = torch.from_numpy(in_word).int()
else:
data['word'] = torch.tensor([-1])
return data