Spaces:
Runtime error
Runtime error
File size: 18,532 Bytes
f7400bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
# from system_utils import get_gpt_id
# dev = get_gpt_id()
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import signal
import time
import csv
import sys
import warnings
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import numpy as np
import time
import pprint
from loguru import logger
import smplx
from torch.utils.tensorboard import SummaryWriter
import wandb
import matplotlib.pyplot as plt
from utils import logger_tools, other_tools, metric
import shutil
import argparse
from omegaconf import OmegaConf
from datetime import datetime
import importlib
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data._utils.collate import default_collate
from dataloaders.build_vocab import Vocab
class BaseTrainer(object):
def __init__(self, cfg, args):
self.cfg = cfg
self.args = args
self.rank = 0
self.checkpoint_path = os.path.join(cfg.output_dir, cfg.exp_name)
# Initialize best metrics tracking
self.val_best = {
"fgd": {"value": float('inf'), "epoch": 0}, # Add fgd if not present
"l1div": {"value": float('-inf'), "epoch": 0}, # Higher is better, so start with -inf
"bc": {"value": float('-inf'), "epoch": 0}, # Higher is better, so start with -inf
"test_clip_fgd": {"value": float('inf'), "epoch": 0},
}
self.train_data = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg.data, loader_type='train')
self.train_sampler = torch.utils.data.distributed.DistributedSampler(self.train_data)
self.train_loader = DataLoader(self.train_data, batch_size=cfg.data.train_bs, sampler=self.train_sampler, drop_last=True, num_workers=4)
if cfg.data.test_clip:
# test data for test_clip, only used for test_clip_fgd
self.test_clip_data = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg.data, loader_type='test')
self.test_clip_loader = DataLoader(self.test_clip_data, batch_size=64, drop_last=False)
# test data for fgd, l1div and bc
test_data_cfg = cfg.data.copy()
test_data_cfg.test_clip = False
self.test_data = init_class(cfg.data.name_pyfile, cfg.data.class_name, test_data_cfg, loader_type='test')
self.test_loader = DataLoader(self.test_data, batch_size=1, drop_last=False)
self.train_length = len(self.train_loader)
logger.info(f"Init train andtest dataloader successfully")
if args.mode == "train":
# Setup logging with wandb
if self.rank == 0:
run_time = datetime.now().strftime("%Y%m%d-%H%M")
run_name = cfg.exp_name + "_" + run_time
if hasattr(cfg, 'resume_from_checkpoint') and cfg.resume_from_checkpoint:
run_name += f"_resumed"
wandb.init(
project=cfg.wandb_project,
name=run_name,
entity=cfg.wandb_entity,
dir=cfg.wandb_log_dir,
config=OmegaConf.to_container(cfg)
)
eval_model_module = __import__(f"models.motion_representation", fromlist=["something"])
eval_args = type('Args', (), {})()
eval_args.vae_layer = 4
eval_args.vae_length = 240
eval_args.vae_test_dim = 330
eval_args.variational = False
eval_args.data_path_1 = "./datasets/hub/"
eval_args.vae_grow = [1,1,2,1]
eval_copy = getattr(eval_model_module, 'VAESKConv')(eval_args)
other_tools.load_checkpoints(
eval_copy,
'./datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/weights/AESKConv_240_100.bin',
'VAESKConv'
)
self.eval_copy = eval_copy
self.smplx = smplx.create(
self.cfg.data.data_path_1+"smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).eval()
self.alignmenter = metric.alignment(0.3, 7, self.train_data.avg_vel, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]) if self.rank == 0 else None
self.align_mask = 60
self.l1_calculator = metric.L1div() if self.rank == 0 else None
def train_recording(self, epoch, its, t_data, t_train, mem_cost, lr_g, lr_d=None):
"""Enhanced training metrics logging"""
metrics = {}
# Collect all metrics
for name, states in self.tracker.loss_meters.items():
metric = states['train']
if metric.count > 0:
value = metric.avg
metrics[name] = value
metrics[f"train/{name}"] = value
# Add learning rates and memory usage
metrics.update({
"train/learning_rate": lr_g,
"train/data_time_ms": t_data*1000,
"train/train_time_ms": t_train*1000,
})
# Log all metrics at once if using wandb
wandb.log(metrics, step=epoch*self.train_length+its)
# Print progress
pstr = f"[{epoch:03d}][{its:03d}/{self.train_length:03d}] "
pstr += " ".join([f"{k}: {v:.3f}" for k, v in metrics.items() if "train/" not in k])
logger.info(pstr)
def val_recording(self, epoch):
"""Enhanced validation metrics logging"""
metrics = {}
# Process all validation metrics
for name, states in self.tracker.loss_meters.items():
metric = states['val']
if metric.count > 0:
value = float(metric.avg) if metric.count > 0 else float(metric.sum)
metrics[f"val/{name}"] = value
# Compare with best values to track best performance
if name in self.val_best:
current_best = self.val_best[name]["value"]
# Custom comparison logic
if name in ["fgd", "test_clip_fgd"]:
is_better = value < current_best
elif name in ["l1div", "bc"]:
is_better = value > current_best
else:
is_better = value < current_best # Default: lower is better
if is_better:
self.val_best[name] = {
"value": float(value),
"epoch": int(epoch)
}
# Save best checkpoint separately
self.save_checkpoint(
epoch=epoch,
iteration=epoch * len(self.train_loader),
is_best=True,
best_metric_name=name
)
# Add best value to metrics
metrics[f"best_{name}"] = float(self.val_best[name]["value"])
metrics[f"best_{name}_epoch"] = int(self.val_best[name]["epoch"])
# Always save regular checkpoint for every validation
self.save_checkpoint(
epoch=epoch,
iteration=epoch * len(self.train_loader),
is_best=False,
best_metric_name=None
)
# Log metrics
if self.rank == 0:
try:
wandb.log(metrics, step=epoch*len(self.train_loader))
except:
logger.info("WANDB not initialized ! Probably doing the testing now")
# Print validation results
pstr = "Validation Results >>>> "
pstr += " ".join([
f"{k.split('/')[-1]}: {v:.3f}"
for k, v in metrics.items()
if k.startswith("val/")
])
logger.info(pstr)
# Print best results
pstr = "Best Results >>>> "
pstr += " ".join([
f"{k}: {v['value']:.3f} (epoch {v['epoch']})"
for k, v in self.val_best.items()
])
logger.info(pstr)
def test_recording(self, dict_name, value, epoch):
self.tracker.update_meter(dict_name, "test", value)
_ = self.tracker.update_values(dict_name, 'test', epoch)
def save_checkpoint(self, epoch, iteration, is_best=False, best_metric_name=None):
"""Save training checkpoint
Args:
epoch (int): Current epoch number
iteration (int): Current iteration number
is_best (bool): Whether this is the best model so far
best_metric_name (str, optional): Name of the metric if this is a best checkpoint
"""
checkpoint = {
'epoch': epoch,
'iteration': iteration,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.opt.state_dict(),
'scheduler_state_dict': self.opt_s.state_dict() if hasattr(self, 'opt_s') and self.opt_s else None,
'val_best': self.val_best,
}
# Save regular checkpoint every 20 epochs
if epoch % 20 == 0:
checkpoint_path = os.path.join(self.checkpoint_path, f"checkpoint_{epoch}")
os.makedirs(checkpoint_path, exist_ok=True)
torch.save(checkpoint, os.path.join(checkpoint_path, "ckpt.pth"))
# Save best checkpoint if specified
if is_best and best_metric_name:
best_path = os.path.join(self.checkpoint_path, f"best_{best_metric_name}")
os.makedirs(best_path, exist_ok=True)
torch.save(checkpoint, os.path.join(best_path, "ckpt.pth"))
def prepare_all():
"""
Parse command line arguments and prepare configuration
"""
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/intention_w_distill.yaml")
parser.add_argument("--resume", type=str, default=None, help="Path to checkpoint to resume from")
parser.add_argument("--debug", action="store_true", help="Enable debugging mode")
parser.add_argument("--mode", type=str, choices=['train', 'test', 'render'], default='train',
help="Choose between 'train' or 'test' or 'render' mode")
parser.add_argument("--checkpoint", type=str, default=None,
help="Checkpoint path for testing or resuming training")
parser.add_argument('overrides', nargs=argparse.REMAINDER)
args = parser.parse_args()
# Load config
if args.config.endswith(".yaml"):
cfg = OmegaConf.load(args.config)
cfg.exp_name = args.config.split("/")[-1][:-5]
else:
raise ValueError("Unsupported config file format. Only .yaml files are allowed.")
# Handle resume from checkpoint
if args.resume:
cfg.resume_from_checkpoint = args.resume
# Debug mode settings
if args.debug:
cfg.wandb_project = "debug"
cfg.exp_name = "debug"
cfg.solver.max_train_steps = 4
# Process override arguments
if args.overrides:
for arg in args.overrides:
if '=' in arg:
key, value = arg.split('=')
try:
value = eval(value)
except:
pass
if key in cfg:
cfg[key] = value
else:
try:
# Handle nested config with dot notation
keys = key.split('.')
cfg_node = cfg
for k in keys[:-1]:
cfg_node = cfg_node[k]
cfg_node[keys[-1]] = value
except:
raise ValueError(f"Key {key} not found in config.")
# Set up wandb
if hasattr(cfg, 'wandb_key'):
os.environ["WANDB_API_KEY"] = cfg.wandb_key
# Create output directories
save_dir = os.path.join(cfg.output_dir, cfg.exp_name)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(os.path.join(save_dir, 'sanity_check'), exist_ok=True)
# Save config
config_path = os.path.join(save_dir, 'sanity_check', f'{cfg.exp_name}.yaml')
with open(config_path, 'w') as f:
OmegaConf.save(cfg, f)
# Copy source files for reproducibility
current_dir = os.path.dirname(os.path.abspath(__file__))
sanity_check_dir = os.path.join(save_dir, 'sanity_check')
output_dir = os.path.abspath(cfg.output_dir)
def is_in_output_dir(path):
return os.path.abspath(path).startswith(output_dir)
def should_copy_file(file_path):
if is_in_output_dir(file_path):
return False
if '__pycache__' in file_path:
return False
if file_path.endswith('.pyc'):
return False
return True
# Copy Python files
for root, dirs, files in os.walk(current_dir):
if is_in_output_dir(root):
continue
for file in files:
if file.endswith(".py"):
full_file_path = os.path.join(root, file)
if should_copy_file(full_file_path):
relative_path = os.path.relpath(full_file_path, current_dir)
dest_path = os.path.join(sanity_check_dir, relative_path)
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
try:
shutil.copy(full_file_path, dest_path)
except Exception as e:
print(f"Warning: Could not copy {full_file_path}: {str(e)}")
return cfg, args
def init_class(module_name, class_name, config, **kwargs):
"""
Dynamically import and initialize a class
"""
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
instance = model_class(config, **kwargs)
return instance
def seed_everything(seed):
"""
Set random seeds for reproducibility
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
@logger.catch
def main_worker(rank, world_size, cfg, args):
if not sys.warnoptions:
warnings.simplefilter("ignore")
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
logger_tools.set_args_and_logger(cfg, rank)
seed_everything(cfg.seed)
other_tools.print_exp_info(cfg)
# Initialize trainer
trainer = __import__(f"shortcut_rvqvae_trainer", fromlist=["something"]).CustomTrainer(cfg, args)
# Resume logic
resume_epoch = 0
if args.resume:
# Find the checkpoint path
if os.path.isdir(args.resume):
ckpt_path = os.path.join(args.resume, "ckpt.pth")
else:
ckpt_path = args.resume
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Checkpoint not found at {ckpt_path}")
checkpoint = torch.load(ckpt_path, map_location="cpu")
trainer.load_checkpoint(checkpoint)
resume_epoch = checkpoint.get('epoch', 0) + 1 # Start from next epoch
logger.info(f"Resumed from checkpoint {ckpt_path}, starting at epoch {resume_epoch}")
if args.mode == "train" and not args.resume:
logger.info("Training from scratch ...")
elif args.mode == "train" and args.resume:
logger.info(f"Resuming training from checkpoint {args.resume} ...")
elif args.mode == "test":
logger.info("Testing ...")
elif args.mode == "render":
logger.info("Rendering ...")
if args.mode == "train":
start_time = time.time()
for epoch in range(resume_epoch, cfg.solver.epochs+1):
if cfg.ddp:
trainer.val_loader.sampler.set_epoch(epoch)
if (epoch) % cfg.val_period == 0 and epoch > 0:
if rank == 0:
if cfg.data.test_clip:
trainer.test_clip(epoch)
else:
trainer.val(epoch)
epoch_time = time.time()-start_time
if trainer.rank == 0:
logger.info(f"Time info >>>> elapsed: {epoch_time/60:.2f} mins\t" +
f"remain: {(cfg.solver.epochs/(epoch+1e-7)-1)*epoch_time/60:.2f} mins")
if epoch != cfg.solver.epochs:
if cfg.ddp:
trainer.train_loader.sampler.set_epoch(epoch)
trainer.tracker.reset()
trainer.train(epoch)
if cfg.debug:
trainer.test(epoch)
# Final cleanup and logging
if rank == 0:
for k, v in trainer.val_best.items():
logger.info(f"Best {k}: {v['value']:.6f} at epoch {v['epoch']}")
wandb.finish()
elif args.mode == "test":
trainer.test_clip(999)
trainer.test(999)
elif args.mode == "render":
trainer.test_render(999)
if __name__ == "__main__":
# Set up distributed training environment
master_addr = '127.0.0.1'
master_port = 29500
import socket
# Function to check if a port is in use
def is_port_in_use(port, host='127.0.0.1'):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind((host, port))
return False # Port is available
except socket.error:
return True # Port is in use
# Find available port
while is_port_in_use(master_port):
print(f"Port {master_port} is in use, trying next port...")
master_port += 1
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = str(master_port)
cfg, args = prepare_all()
if cfg.ddp:
mp.set_start_method("spawn", force=True)
mp.spawn(
main_worker,
args=(len(cfg.gpus), cfg, args),
nprocs=len(cfg.gpus),
)
else:
main_worker(0, 1, cfg, args) |