File size: 31,105 Bytes
f7400bf
 
 
 
 
 
 
d2329fe
f7400bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a11c2
f7400bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a11c2
 
 
 
 
 
f7400bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efed32c
 
 
 
 
 
b5725c3
efed32c
b5725c3
f7400bf
 
b5725c3
f7400bf
 
b5725c3
f7400bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb87c7
 
f7400bf
 
 
 
 
 
 
 
fcb87c7
 
 
 
 
 
 
 
 
 
 
 
 
f7400bf
fcb87c7
f7400bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import os
import signal
import time
import csv
import sys
import warnings
import random
from pathlib import Path
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import numpy as np
import time
import pprint
from loguru import logger
import smplx
import matplotlib.pyplot as plt
from utils import config, logger_tools, other_tools_hf, metric, data_transfer, other_tools
from utils.joints import upper_body_mask, hands_body_mask, lower_body_mask
from dataloaders import data_tools
from dataloaders.build_vocab import Vocab
from dataloaders.data_tools import joints_list
from utils import rotation_conversions as rc
import soundfile as sf
import librosa 
import subprocess
import shutil
from transformers import pipeline
from models.vq.model import RVQVAE

device = "cuda:0" if torch.cuda.is_available() else "cpu"

import platform
if platform.system() == "Linux":
    os.environ['PYOPENGL_PLATFORM'] = 'egl'

pipe = pipeline(
  "automatic-speech-recognition",
  model="openai/whisper-tiny.en",
  chunk_length_s=30,
  device=device,
)       

debug = False

class BaseTrainer(object):
    def __init__(self, args, cfg, ap):
        
        hf_dir = "hf"
        time_local = time.localtime()
        time_name_expend = "%02d%02d_%02d%02d%02d_"%(time_local[1], time_local[2],time_local[3], time_local[4], time_local[5])
        self.time_name_expend = time_name_expend
        tmp_dir = args.out_path + "custom/"+ time_name_expend + hf_dir
        if not os.path.exists(tmp_dir + "/"):
            os.makedirs(tmp_dir + "/")
        self.audio_path = tmp_dir + "/tmp.wav"
        sf.write(self.audio_path, ap[1], ap[0])
        
        
        audio, ssr = librosa.load(self.audio_path,sr=args.audio_sr)
        

        # use asr model to get corresponding text transcripts
        file_path = tmp_dir+"/tmp.lab"
        self.textgrid_path = tmp_dir + "/tmp.TextGrid"
        if not debug:
            text = pipe(audio, batch_size=8)["text"]
            with open(file_path, "w", encoding="utf-8") as file:
                file.write(text)
            
            # use montreal forced aligner to get textgrid
            mfa_override = os.environ.get("MFA_BINARY")
            mfa_path = mfa_override or shutil.which("mfa")
            if not mfa_path:
                raise FileNotFoundError(
                    "Montreal Forced Aligner binary not found. Install it or set MFA_BINARY"
                )
            env = os.environ.copy()
            command = [mfa_path, "align", tmp_dir, "english_us_arpa", "english_us_arpa", tmp_dir]
            result = subprocess.run(command, capture_output=True, text=True, env=env)
            print(f"MFA result: {result}")
            if result.returncode != 0:
                print(f"MFA stderr: {result.stderr}")
            

        ap = (ssr, audio)
        self.args = args
        self.rank = 0 # dist.get_rank()
       
        args.textgrid_file_path = self.textgrid_path
        args.audio_file_path = self.audio_path
    
    
        self.rank = 0 # dist.get_rank()
       
        self.checkpoint_path = tmp_dir
        args.tmp_dir = tmp_dir
        if self.rank == 0:
            self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test")
            self.test_loader = torch.utils.data.DataLoader(
                self.test_data, 
                batch_size=1,  
                shuffle=False,  
                num_workers=args.loader_workers,
                drop_last=False,
            )
        logger.info(f"Init test dataloader success")
        model_module = __import__(f"models.{cfg.model.model_name}", fromlist=["something"])
        
        self.model = getattr(model_module, cfg.model.g_name)(cfg)
        
        if self.rank == 0:
            logger.info(self.model)
            logger.info(f"init {cfg.model.g_name} success")

        smplx_path = Path(self.args.data_path_1) / "smplx_models"
        if not smplx_path.exists():
            raise FileNotFoundError(
                "SMPL-X model directory missing at {}. Ensure assets are downloaded or"
                " set HF_GESTURELSM_WEIGHTS_REPO with smplx_models.".format(smplx_path)
            )
        self.smplx = smplx.SMPLX(
            model_path=str(smplx_path),
            gender='NEUTRAL_2020',
            use_face_contour=False,
            num_betas=300,
            num_expression_coeffs=100,
            ext='npz',
            use_pca=False,
        ).eval()

        self.args = args
        self.ori_joint_list = joints_list[self.args.ori_joints]
        self.tar_joint_list_face = joints_list["beat_smplx_face"]
        self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
        self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
        self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
       
        self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
        self.joints = 55
        for joint_name in self.tar_joint_list_face:
            self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
        for joint_name in self.tar_joint_list_upper:
            self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
        for joint_name in self.tar_joint_list_hands:
            self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
        for joint_name in self.tar_joint_list_lower:
            self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1

        self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self","predict_x0_loss"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False, False, False,False,False,False])

        
        ##### VQ-VAE models #####
        """Initialize and load VQ-VAE models for different body parts."""
        # Face VQ model
        vq_model_module = __import__("models.motion_representation", fromlist=["something"])
        self.vq_model_face = self._create_face_vq_model(vq_model_module)
        
        # Body part VQ models
        self.vq_models = self._create_body_vq_models()
        
        # Set all VQ models to eval mode
        self.vq_model_face.eval()
        for model in self.vq_models.values():
            model.eval()
        self.vq_model_upper, self.vq_model_hands, self.vq_model_lower = self.vq_models.values()
        self.vqvae_latent_scale = self.args.vqvae_latent_scale 


        self.args.vae_length = 240
        
        ##### Loss functions #####
        self.reclatent_loss = nn.MSELoss()
        self.vel_loss = torch.nn.L1Loss(reduction='mean')
        
        
        ##### Normalization #####
        self.use_trans = self.args.use_trans
        self.mean = np.load(args.mean_pose_path)
        self.std = np.load(args.std_pose_path)
        
        # Extract body part specific normalizations
        for part in ['upper', 'hands', 'lower']:
            mask = globals()[f'{part}_body_mask']
            setattr(self, f'mean_{part}', torch.from_numpy(self.mean[mask]))
            setattr(self, f'std_{part}', torch.from_numpy(self.std[mask]))
        
        # Translation normalization if needed
        if self.args.use_trans:
            self.trans_mean = torch.from_numpy(np.load(self.args.mean_trans_path))
            self.trans_std = torch.from_numpy(np.load(self.args.std_trans_path))
    
    def _create_face_vq_model(self, module):
        """Create and initialize face VQ model."""
        self.args.vae_layer = 2
        self.args.vae_length = 256
        self.args.vae_test_dim = 106
        model = getattr(module, "VQVAEConvZero")(self.args)
        other_tools.load_checkpoints(model, "./datasets/hub/pretrained_vq/face_vertex_1layer_790.bin", 
                                   self.args.e_name)
        return model
    
    def _create_body_vq_models(self):
        """Create VQ-VAE models for body parts."""
        vq_configs = {
            'upper': {'dim_pose': 78},
            'hands': {'dim_pose': 180},
            'lower': {'dim_pose': 54 if not self.args.use_trans else 57}
        }

        vq_models = {}
        for part, config in vq_configs.items():
            model = self._create_rvqvae_model(config['dim_pose'], part)
            vq_models[part] = model
            
        return vq_models
    


    def _create_rvqvae_model(self, dim_pose: int, body_part: str) -> RVQVAE:
        """Create a single RVQVAE model with specified configuration."""
        args = self.args
        model = RVQVAE(
            args, dim_pose, args.nb_code, args.code_dim, args.code_dim,
            args.down_t, args.stride_t, args.width, args.depth,
            args.dilation_growth_rate, args.vq_act, args.vq_norm
        )

        # Base directory = folder where demo.py lives
        base_dir = Path(__file__).resolve().parent
        checkpoint_path = base_dir / "ckpt" / f"net_300000_{body_part}.pth"

        if not checkpoint_path.exists():
            raise FileNotFoundError(
                f"RVQVAE checkpoint for '{body_part}' not found at '{checkpoint_path}'.\n"
                f"CWD is {Path.cwd()}."
            )

        state = torch.load(str(checkpoint_path), map_location="cpu")
        model.load_state_dict(state["net"])
        return model

      
    
    def inverse_selection(self, filtered_t, selection_array, n):
        original_shape_t = np.zeros((n, selection_array.size))
        selected_indices = np.where(selection_array == 1)[0]
        for i in range(n):
            original_shape_t[i, selected_indices] = filtered_t[i]
        return original_shape_t
    
    def inverse_selection_tensor(self, filtered_t, selection_array, n):
        selection_array = torch.from_numpy(selection_array)
        original_shape_t = torch.zeros((n, 165))
        selected_indices = torch.where(selection_array == 1)[0]
        for i in range(n):
            original_shape_t[i, selected_indices] = filtered_t[i]
        return original_shape_t
    
    def _load_data(self, dict_data):
        tar_pose_raw = dict_data["pose"]
        tar_pose = tar_pose_raw[:, :, :165]
        tar_contact = tar_pose_raw[:, :, 165:169]
        tar_trans = dict_data["trans"]
        tar_trans_v = dict_data["trans_v"]
        tar_exps = dict_data["facial"]
        in_audio = dict_data["audio"]
        audio_onset = dict_data.get("audio_onset")
        if audio_onset is None:
            audio_onset = in_audio
        if 'wavlm' in dict_data:
            wavlm = dict_data["wavlm"]
        else:
            wavlm = None
        in_word = dict_data["word"]
        tar_beta = dict_data["beta"]
        tar_id = dict_data["id"].long()
        bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints

        tar_pose_hands = tar_pose[:, :, 25*3:55*3]
        tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
        tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)

        tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
        tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
        tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)

        tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
        tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
        tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)

        tar_pose_lower = tar_pose_leg

        if self.args.pose_norm:
            tar_pose_upper = (tar_pose_upper - self.mean_upper) / self.std_upper
            tar_pose_hands = (tar_pose_hands - self.mean_hands) / self.std_hands
            tar_pose_lower = (tar_pose_lower - self.mean_lower) / self.std_lower
        
        
        if self.use_trans:
            tar_trans_v = (tar_trans_v - self.trans_mean)/self.trans_std
            tar_pose_lower = torch.cat([tar_pose_lower,tar_trans_v], dim=-1)
      

        latent_upper_top = self.vq_model_upper.map2latent(tar_pose_upper)
        latent_hands_top = self.vq_model_hands.map2latent(tar_pose_hands)
        latent_lower_top = self.vq_model_lower.map2latent(tar_pose_lower)

        latent_lengths = [latent_upper_top.shape[1], latent_hands_top.shape[1], latent_lower_top.shape[1]]
        if len(set(latent_lengths)) != 1:
            min_len = min(latent_lengths)
            logger.warning(
                "Latent length mismatch detected (upper=%d, hands=%d, lower=%d); truncating to %d",
                latent_upper_top.shape[1],
                latent_hands_top.shape[1],
                latent_lower_top.shape[1],
                min_len,
            )
            latent_upper_top = latent_upper_top[:, :min_len, :]
            latent_hands_top = latent_hands_top[:, :min_len, :]
            latent_lower_top = latent_lower_top[:, :min_len, :]

        latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)/self.args.vqvae_latent_scale
        
        style_feature = None
        
        return {
            "in_audio": in_audio,
            "wavlm": wavlm,
            "in_word": in_word,
            "tar_trans": tar_trans,
            "tar_exps": tar_exps,
            "tar_beta": tar_beta,
            "tar_pose": tar_pose,
            "latent_in":  latent_in,
            "audio_onset": audio_onset,
            "tar_id": tar_id,
            "tar_contact": tar_contact,
            "style_feature":style_feature,
        }
    
    def _g_test(self, loaded_data):
        
        mode = 'test'
        bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints 
        tar_pose = loaded_data["tar_pose"]
        tar_beta = loaded_data["tar_beta"]
        tar_exps = loaded_data["tar_exps"]
        tar_contact = loaded_data["tar_contact"]
        tar_trans = loaded_data["tar_trans"]
        in_word = loaded_data["in_word"]
        in_audio = loaded_data["in_audio"]
        audio_onset = loaded_data.get("audio_onset")
        in_x0 = loaded_data['latent_in']
        in_seed = loaded_data['latent_in']
        
        remain = n%8
        if remain != 0:
            tar_pose = tar_pose[:, :-remain, :]
            tar_beta = tar_beta[:, :-remain, :]
            tar_trans = tar_trans[:, :-remain, :]
            in_word = in_word[:, :-remain]
            tar_exps = tar_exps[:, :-remain, :]
            tar_contact = tar_contact[:, :-remain, :]
            in_x0 = in_x0[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
            in_seed = in_seed[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
            n = n - remain

        tar_pose_jaw = tar_pose[:, :, 66:69]
        tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
        tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
        tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)

        tar_pose_hands = tar_pose[:, :, 25*3:55*3]
        tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
        tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)

        tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
        tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
        tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)

        tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
        tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
        tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
        tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
        
        tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
        tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
        latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
        
        rec_all_face = []
        rec_all_upper = []
        rec_all_lower = []
        rec_all_hands = []
        vqvae_squeeze_scale = self.args.vqvae_squeeze_scale
        roundt = (n - self.args.pre_frames * vqvae_squeeze_scale) // (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
        remain = (n - self.args.pre_frames * vqvae_squeeze_scale) % (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
        round_l = self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale
         

        for i in range(0, roundt):
            in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames * vqvae_squeeze_scale]

            in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale]
            if audio_onset is not None:
                in_audio_onset_tmp = audio_onset[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale]
            else:
                in_audio_onset_tmp = in_audio_tmp
            in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames]
            in_seed_tmp = in_seed[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
            in_x0_tmp = in_x0[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
            mask_val = torch.ones(bs, self.args.pose_length, self.args.pose_dims+3+4).float()
            mask_val[:, :self.args.pre_frames, :] = 0.0
            if i == 0:
                in_seed_tmp = in_seed_tmp[:, :self.args.pre_frames, :]
            else:
                in_seed_tmp = last_sample[:, -self.args.pre_frames:, :]

            cond_ = {'y':{}}
            cond_['y']['audio'] = in_audio_tmp
            cond_['y']['audio_onset'] = in_audio_onset_tmp
            cond_['y']['word'] = in_word_tmp
            cond_['y']['id'] = in_id_tmp
            cond_['y']['seed'] =in_seed_tmp
            cond_['y']['mask'] = (torch.zeros([self.args.batch_size, 1, 1, self.args.pose_length]) < 1)
            
            cond_['y']['style_feature'] = torch.zeros([bs, 512])

            shape_ = (bs, 3*128, 1, 32)
            sample = self.model(cond_)['latents']
            sample = sample.squeeze().permute(1,0).unsqueeze(0)

            last_sample = sample.clone()
            
            rec_latent_upper = sample[...,:128]
            rec_latent_hands = sample[...,128:2*128]
            rec_latent_lower = sample[...,2*128:]
            
           

            if i == 0:
                rec_all_upper.append(rec_latent_upper)
                rec_all_hands.append(rec_latent_hands)
                rec_all_lower.append(rec_latent_lower)
            else:
                rec_all_upper.append(rec_latent_upper[:, self.args.pre_frames:])
                rec_all_hands.append(rec_latent_hands[:, self.args.pre_frames:])
                rec_all_lower.append(rec_latent_lower[:, self.args.pre_frames:])

        try:
            rec_all_upper = torch.cat(rec_all_upper, dim=1) * self.vqvae_latent_scale
            rec_all_hands = torch.cat(rec_all_hands, dim=1) * self.vqvae_latent_scale
            rec_all_lower = torch.cat(rec_all_lower, dim=1) * self.vqvae_latent_scale
        except RuntimeError as exc:
            shape_summary = {
                "upper": [tuple(t.shape) for t in rec_all_upper],
                "hands": [tuple(t.shape) for t in rec_all_hands],
                "lower": [tuple(t.shape) for t in rec_all_lower],
            }
            logger.error("Failed to concatenate latent segments: %s | shapes=%s", exc, shape_summary)
            raise

        rec_upper = self.vq_model_upper.latent2origin(rec_all_upper)[0]
        rec_hands = self.vq_model_hands.latent2origin(rec_all_hands)[0]
        rec_lower = self.vq_model_lower.latent2origin(rec_all_lower)[0]
        
        
        if self.use_trans:
            rec_trans_v = rec_lower[...,-3:]
            rec_trans_v = rec_trans_v * self.trans_std + self.trans_mean
            rec_trans = torch.zeros_like(rec_trans_v)
            rec_trans = torch.cumsum(rec_trans_v, dim=-2)
            rec_trans[...,1]=rec_trans_v[...,1]
            rec_lower = rec_lower[...,:-3]
        
        if self.args.pose_norm:
            rec_upper = rec_upper * self.std_upper + self.mean_upper
            rec_hands = rec_hands * self.std_hands + self.mean_hands
            rec_lower = rec_lower * self.std_lower + self.mean_lower




        n = n - remain
        tar_pose = tar_pose[:, :n, :]
        tar_exps = tar_exps[:, :n, :]
        tar_trans = tar_trans[:, :n, :]
        tar_beta = tar_beta[:, :n, :]


        rec_exps = tar_exps
        #rec_pose_jaw = rec_face[:, :, :6]
        rec_pose_legs = rec_lower[:, :, :54]
        bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
        rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
        rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
        rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
        rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n)
        rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
        rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
        rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
        rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
        rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n)
        rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
        rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
        rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
        rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n)
        rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover 
        rec_pose[:, 66:69] = tar_pose.reshape(bs*n, 55*3)[:, 66:69]

        rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
        rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
        tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
        tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
        
        return {
            'rec_pose': rec_pose,
            'rec_trans': rec_trans,
            'tar_pose': tar_pose,
            'tar_exps': tar_exps,
            'tar_beta': tar_beta,
            'tar_trans': tar_trans,
            'rec_exps': rec_exps,
        }


    def test_demo(self, epoch):
        '''
        input audio and text, output motion
        do not calculate loss and metric
        save video
        '''
        print("=== Starting test_demo ===")
        results_save_path = self.checkpoint_path + f"/{epoch}/"
        if os.path.exists(results_save_path): 
            import shutil
            shutil.rmtree(results_save_path)
        os.makedirs(results_save_path)
        start_time = time.time()
        total_length = 0
        print("Setting models to eval mode...")
        self.model.eval()
        self.smplx.eval()
        # self.eval_copy.eval()
        print("Starting inference loop...")
        with torch.no_grad():
            for its, batch_data in enumerate(self.test_loader):
                print(f"Processing batch {its}...")
                print("Loading data...")
                loaded_data = self._load_data(batch_data)    
                print("Running model inference (this may take several minutes on CPU)...")
                net_out = self._g_test(loaded_data)
                print("Model inference complete!")
                tar_pose = net_out['tar_pose']
                rec_pose = net_out['rec_pose']
                tar_exps = net_out['tar_exps']
                tar_beta = net_out['tar_beta']
                rec_trans = net_out['rec_trans']
                tar_trans = net_out['tar_trans']
                rec_exps = net_out['rec_exps']
                bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
                if (30/self.args.pose_fps) != 1:
                    assert 30%self.args.pose_fps == 0
                    n *= int(30/self.args.pose_fps)
                    tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                    rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                

                rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
                rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
                tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
                tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)

                rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
                rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
                tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
                tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
                

                tar_pose_np = tar_pose.detach().cpu().numpy()
                rec_pose_np = rec_pose.detach().cpu().numpy()
                rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
                rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100) 
                tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
                tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
                gt_npz = np.load("./demo/examples/2_scott_0_1_1.npz", allow_pickle=True)

                print("Saving results to npz file...")
                results_npz_file_save_path = results_save_path+f"result_{self.time_name_expend}"+'.npz'
                np.savez(results_npz_file_save_path,
                    betas=gt_npz["betas"],
                    poses=rec_pose_np,
                    expressions=rec_exp_np,
                    trans=rec_trans_np,
                    model='smplx2020',
                    gender='neutral',
                    mocap_frame_rate = 30,
                )
                total_length += n
                print("Rendering video (this may take 1-2 minutes)...")
                render_vid_path = other_tools_hf.render_one_sequence_no_gt(
                    results_npz_file_save_path, 
                    # results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', 
                    results_save_path,
                    self.audio_path,
                    self.args.data_path_1+"smplx_models/",
                    use_matplotlib = False,
                    args = self.args,
                    )
                print(f"Video rendered successfully: {render_vid_path}")

        result = (
            render_vid_path,
            results_npz_file_save_path,
        )

        end_time = time.time() - start_time
        print(f"=== Complete! Total time: {int(end_time)} seconds ===")
        logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
        return result
       
@logger.catch
def gesturelsm(audio_path, sample_stratege=None):
    print("\n" + "="*60)
    print("STARTING GESTURE GENERATION")
    print("="*60)
    
    # Set the config path for demo
    import sys
    sys.argv = ['demo.py', '--config', 'configs/shortcut_rvqvae_128_hf.yaml']
    args, cfg = config.parse_args()
    
    print(f"Sample strategy: {sample_stratege}")

    #os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
    if not sys.warnoptions:
        warnings.simplefilter("ignore")
    # dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)

    #logger_tools.set_args_and_logger(args, rank)
    other_tools_hf.set_random_seed(args)
    other_tools_hf.print_exp_info(args)

    # return one intance of trainer
    try:
        print("Creating trainer instance...")
        trainer = BaseTrainer(args, cfg, ap=audio_path)
        print("Loading model checkpoint...")
        other_tools.load_checkpoints(trainer.model, args.test_ckpt, args.g_name)
        print("Checkpoint loaded successfully!")
        result = trainer.test_demo(999)
        if isinstance(result, tuple) and len(result) == 2:
            return result
        # If a single path or None returned, expand to two outputs
        return (result, None)
    except Exception as e:
        logger.exception("GestureLSM demo inference failed")
        # Return two Nones to satisfy Gradio output schema
        return (None, None)

examples = [
    ["demo/examples/2_scott_0_1_1.wav"],
    ["demo/examples/2_scott_0_2_2.wav"],
    ["demo/examples/2_scott_0_3_3.wav"],
    ["demo/examples/2_scott_0_4_4.wav"],
    ["demo/examples/2_scott_0_5_5.wav"],
]

demo = gr.Interface(
    gesturelsm,  # function
    inputs=[
        gr.Audio(),
    ],  # input type
    outputs=[
        gr.Video(format="mp4", visible=True),
        gr.File(label="download motion and visualize in blender")
    ],
    title='GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling',
    description="1. Upload your audio.  <br/>\
        2. Then, sit back and wait for the rendering to happen! This may take a while (e.g. 1-4 minutes) <br/>\
        3. After, you can view the videos.  <br/>\
        4. Notice that we use a fix face animation, our method only produce body motion. <br/>\
        5. Use DDPM sample strategy will generate a better result, while it will take more inference time.  \
            ",
    article="Project links: [GestureLSM](https://github.com/andypinxinliu/GestureLSM). <br/>\
             Reference links: [EMAGE](https://pantomatrix.github.io/EMAGE/). ", 
    examples=examples,
)

            
if __name__ == "__main__":
    os.environ["MASTER_ADDR"]='127.0.0.3'
    os.environ["MASTER_PORT"]='8678'
    #os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
    demo.launch(server_name="0.0.0.0",share=True)