Spaces:
Runtime error
Runtime error
File size: 31,105 Bytes
f7400bf d2329fe f7400bf 10a11c2 f7400bf 10a11c2 f7400bf efed32c b5725c3 efed32c b5725c3 f7400bf b5725c3 f7400bf b5725c3 f7400bf fcb87c7 f7400bf fcb87c7 f7400bf fcb87c7 f7400bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import os
import signal
import time
import csv
import sys
import warnings
import random
from pathlib import Path
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import numpy as np
import time
import pprint
from loguru import logger
import smplx
import matplotlib.pyplot as plt
from utils import config, logger_tools, other_tools_hf, metric, data_transfer, other_tools
from utils.joints import upper_body_mask, hands_body_mask, lower_body_mask
from dataloaders import data_tools
from dataloaders.build_vocab import Vocab
from dataloaders.data_tools import joints_list
from utils import rotation_conversions as rc
import soundfile as sf
import librosa
import subprocess
import shutil
from transformers import pipeline
from models.vq.model import RVQVAE
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import platform
if platform.system() == "Linux":
os.environ['PYOPENGL_PLATFORM'] = 'egl'
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny.en",
chunk_length_s=30,
device=device,
)
debug = False
class BaseTrainer(object):
def __init__(self, args, cfg, ap):
hf_dir = "hf"
time_local = time.localtime()
time_name_expend = "%02d%02d_%02d%02d%02d_"%(time_local[1], time_local[2],time_local[3], time_local[4], time_local[5])
self.time_name_expend = time_name_expend
tmp_dir = args.out_path + "custom/"+ time_name_expend + hf_dir
if not os.path.exists(tmp_dir + "/"):
os.makedirs(tmp_dir + "/")
self.audio_path = tmp_dir + "/tmp.wav"
sf.write(self.audio_path, ap[1], ap[0])
audio, ssr = librosa.load(self.audio_path,sr=args.audio_sr)
# use asr model to get corresponding text transcripts
file_path = tmp_dir+"/tmp.lab"
self.textgrid_path = tmp_dir + "/tmp.TextGrid"
if not debug:
text = pipe(audio, batch_size=8)["text"]
with open(file_path, "w", encoding="utf-8") as file:
file.write(text)
# use montreal forced aligner to get textgrid
mfa_override = os.environ.get("MFA_BINARY")
mfa_path = mfa_override or shutil.which("mfa")
if not mfa_path:
raise FileNotFoundError(
"Montreal Forced Aligner binary not found. Install it or set MFA_BINARY"
)
env = os.environ.copy()
command = [mfa_path, "align", tmp_dir, "english_us_arpa", "english_us_arpa", tmp_dir]
result = subprocess.run(command, capture_output=True, text=True, env=env)
print(f"MFA result: {result}")
if result.returncode != 0:
print(f"MFA stderr: {result.stderr}")
ap = (ssr, audio)
self.args = args
self.rank = 0 # dist.get_rank()
args.textgrid_file_path = self.textgrid_path
args.audio_file_path = self.audio_path
self.rank = 0 # dist.get_rank()
self.checkpoint_path = tmp_dir
args.tmp_dir = tmp_dir
if self.rank == 0:
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test")
self.test_loader = torch.utils.data.DataLoader(
self.test_data,
batch_size=1,
shuffle=False,
num_workers=args.loader_workers,
drop_last=False,
)
logger.info(f"Init test dataloader success")
model_module = __import__(f"models.{cfg.model.model_name}", fromlist=["something"])
self.model = getattr(model_module, cfg.model.g_name)(cfg)
if self.rank == 0:
logger.info(self.model)
logger.info(f"init {cfg.model.g_name} success")
smplx_path = Path(self.args.data_path_1) / "smplx_models"
if not smplx_path.exists():
raise FileNotFoundError(
"SMPL-X model directory missing at {}. Ensure assets are downloaded or"
" set HF_GESTURELSM_WEIGHTS_REPO with smplx_models.".format(smplx_path)
)
self.smplx = smplx.SMPLX(
model_path=str(smplx_path),
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).eval()
self.args = args
self.ori_joint_list = joints_list[self.args.ori_joints]
self.tar_joint_list_face = joints_list["beat_smplx_face"]
self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
self.joints = 55
for joint_name in self.tar_joint_list_face:
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_upper:
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_hands:
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_lower:
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self","predict_x0_loss"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False, False, False,False,False,False])
##### VQ-VAE models #####
"""Initialize and load VQ-VAE models for different body parts."""
# Face VQ model
vq_model_module = __import__("models.motion_representation", fromlist=["something"])
self.vq_model_face = self._create_face_vq_model(vq_model_module)
# Body part VQ models
self.vq_models = self._create_body_vq_models()
# Set all VQ models to eval mode
self.vq_model_face.eval()
for model in self.vq_models.values():
model.eval()
self.vq_model_upper, self.vq_model_hands, self.vq_model_lower = self.vq_models.values()
self.vqvae_latent_scale = self.args.vqvae_latent_scale
self.args.vae_length = 240
##### Loss functions #####
self.reclatent_loss = nn.MSELoss()
self.vel_loss = torch.nn.L1Loss(reduction='mean')
##### Normalization #####
self.use_trans = self.args.use_trans
self.mean = np.load(args.mean_pose_path)
self.std = np.load(args.std_pose_path)
# Extract body part specific normalizations
for part in ['upper', 'hands', 'lower']:
mask = globals()[f'{part}_body_mask']
setattr(self, f'mean_{part}', torch.from_numpy(self.mean[mask]))
setattr(self, f'std_{part}', torch.from_numpy(self.std[mask]))
# Translation normalization if needed
if self.args.use_trans:
self.trans_mean = torch.from_numpy(np.load(self.args.mean_trans_path))
self.trans_std = torch.from_numpy(np.load(self.args.std_trans_path))
def _create_face_vq_model(self, module):
"""Create and initialize face VQ model."""
self.args.vae_layer = 2
self.args.vae_length = 256
self.args.vae_test_dim = 106
model = getattr(module, "VQVAEConvZero")(self.args)
other_tools.load_checkpoints(model, "./datasets/hub/pretrained_vq/face_vertex_1layer_790.bin",
self.args.e_name)
return model
def _create_body_vq_models(self):
"""Create VQ-VAE models for body parts."""
vq_configs = {
'upper': {'dim_pose': 78},
'hands': {'dim_pose': 180},
'lower': {'dim_pose': 54 if not self.args.use_trans else 57}
}
vq_models = {}
for part, config in vq_configs.items():
model = self._create_rvqvae_model(config['dim_pose'], part)
vq_models[part] = model
return vq_models
def _create_rvqvae_model(self, dim_pose: int, body_part: str) -> RVQVAE:
"""Create a single RVQVAE model with specified configuration."""
args = self.args
model = RVQVAE(
args, dim_pose, args.nb_code, args.code_dim, args.code_dim,
args.down_t, args.stride_t, args.width, args.depth,
args.dilation_growth_rate, args.vq_act, args.vq_norm
)
# Base directory = folder where demo.py lives
base_dir = Path(__file__).resolve().parent
checkpoint_path = base_dir / "ckpt" / f"net_300000_{body_part}.pth"
if not checkpoint_path.exists():
raise FileNotFoundError(
f"RVQVAE checkpoint for '{body_part}' not found at '{checkpoint_path}'.\n"
f"CWD is {Path.cwd()}."
)
state = torch.load(str(checkpoint_path), map_location="cpu")
model.load_state_dict(state["net"])
return model
def inverse_selection(self, filtered_t, selection_array, n):
original_shape_t = np.zeros((n, selection_array.size))
selected_indices = np.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def inverse_selection_tensor(self, filtered_t, selection_array, n):
selection_array = torch.from_numpy(selection_array)
original_shape_t = torch.zeros((n, 165))
selected_indices = torch.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def _load_data(self, dict_data):
tar_pose_raw = dict_data["pose"]
tar_pose = tar_pose_raw[:, :, :165]
tar_contact = tar_pose_raw[:, :, 165:169]
tar_trans = dict_data["trans"]
tar_trans_v = dict_data["trans_v"]
tar_exps = dict_data["facial"]
in_audio = dict_data["audio"]
audio_onset = dict_data.get("audio_onset")
if audio_onset is None:
audio_onset = in_audio
if 'wavlm' in dict_data:
wavlm = dict_data["wavlm"]
else:
wavlm = None
in_word = dict_data["word"]
tar_beta = dict_data["beta"]
tar_id = dict_data["id"].long()
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
tar_pose_lower = tar_pose_leg
if self.args.pose_norm:
tar_pose_upper = (tar_pose_upper - self.mean_upper) / self.std_upper
tar_pose_hands = (tar_pose_hands - self.mean_hands) / self.std_hands
tar_pose_lower = (tar_pose_lower - self.mean_lower) / self.std_lower
if self.use_trans:
tar_trans_v = (tar_trans_v - self.trans_mean)/self.trans_std
tar_pose_lower = torch.cat([tar_pose_lower,tar_trans_v], dim=-1)
latent_upper_top = self.vq_model_upper.map2latent(tar_pose_upper)
latent_hands_top = self.vq_model_hands.map2latent(tar_pose_hands)
latent_lower_top = self.vq_model_lower.map2latent(tar_pose_lower)
latent_lengths = [latent_upper_top.shape[1], latent_hands_top.shape[1], latent_lower_top.shape[1]]
if len(set(latent_lengths)) != 1:
min_len = min(latent_lengths)
logger.warning(
"Latent length mismatch detected (upper=%d, hands=%d, lower=%d); truncating to %d",
latent_upper_top.shape[1],
latent_hands_top.shape[1],
latent_lower_top.shape[1],
min_len,
)
latent_upper_top = latent_upper_top[:, :min_len, :]
latent_hands_top = latent_hands_top[:, :min_len, :]
latent_lower_top = latent_lower_top[:, :min_len, :]
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)/self.args.vqvae_latent_scale
style_feature = None
return {
"in_audio": in_audio,
"wavlm": wavlm,
"in_word": in_word,
"tar_trans": tar_trans,
"tar_exps": tar_exps,
"tar_beta": tar_beta,
"tar_pose": tar_pose,
"latent_in": latent_in,
"audio_onset": audio_onset,
"tar_id": tar_id,
"tar_contact": tar_contact,
"style_feature":style_feature,
}
def _g_test(self, loaded_data):
mode = 'test'
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
tar_pose = loaded_data["tar_pose"]
tar_beta = loaded_data["tar_beta"]
tar_exps = loaded_data["tar_exps"]
tar_contact = loaded_data["tar_contact"]
tar_trans = loaded_data["tar_trans"]
in_word = loaded_data["in_word"]
in_audio = loaded_data["in_audio"]
audio_onset = loaded_data.get("audio_onset")
in_x0 = loaded_data['latent_in']
in_seed = loaded_data['latent_in']
remain = n%8
if remain != 0:
tar_pose = tar_pose[:, :-remain, :]
tar_beta = tar_beta[:, :-remain, :]
tar_trans = tar_trans[:, :-remain, :]
in_word = in_word[:, :-remain]
tar_exps = tar_exps[:, :-remain, :]
tar_contact = tar_contact[:, :-remain, :]
in_x0 = in_x0[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
in_seed = in_seed[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
n = n - remain
tar_pose_jaw = tar_pose[:, :, 66:69]
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
rec_all_face = []
rec_all_upper = []
rec_all_lower = []
rec_all_hands = []
vqvae_squeeze_scale = self.args.vqvae_squeeze_scale
roundt = (n - self.args.pre_frames * vqvae_squeeze_scale) // (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
remain = (n - self.args.pre_frames * vqvae_squeeze_scale) % (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
round_l = self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale
for i in range(0, roundt):
in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames * vqvae_squeeze_scale]
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale]
if audio_onset is not None:
in_audio_onset_tmp = audio_onset[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale]
else:
in_audio_onset_tmp = in_audio_tmp
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames]
in_seed_tmp = in_seed[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
in_x0_tmp = in_x0[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
mask_val = torch.ones(bs, self.args.pose_length, self.args.pose_dims+3+4).float()
mask_val[:, :self.args.pre_frames, :] = 0.0
if i == 0:
in_seed_tmp = in_seed_tmp[:, :self.args.pre_frames, :]
else:
in_seed_tmp = last_sample[:, -self.args.pre_frames:, :]
cond_ = {'y':{}}
cond_['y']['audio'] = in_audio_tmp
cond_['y']['audio_onset'] = in_audio_onset_tmp
cond_['y']['word'] = in_word_tmp
cond_['y']['id'] = in_id_tmp
cond_['y']['seed'] =in_seed_tmp
cond_['y']['mask'] = (torch.zeros([self.args.batch_size, 1, 1, self.args.pose_length]) < 1)
cond_['y']['style_feature'] = torch.zeros([bs, 512])
shape_ = (bs, 3*128, 1, 32)
sample = self.model(cond_)['latents']
sample = sample.squeeze().permute(1,0).unsqueeze(0)
last_sample = sample.clone()
rec_latent_upper = sample[...,:128]
rec_latent_hands = sample[...,128:2*128]
rec_latent_lower = sample[...,2*128:]
if i == 0:
rec_all_upper.append(rec_latent_upper)
rec_all_hands.append(rec_latent_hands)
rec_all_lower.append(rec_latent_lower)
else:
rec_all_upper.append(rec_latent_upper[:, self.args.pre_frames:])
rec_all_hands.append(rec_latent_hands[:, self.args.pre_frames:])
rec_all_lower.append(rec_latent_lower[:, self.args.pre_frames:])
try:
rec_all_upper = torch.cat(rec_all_upper, dim=1) * self.vqvae_latent_scale
rec_all_hands = torch.cat(rec_all_hands, dim=1) * self.vqvae_latent_scale
rec_all_lower = torch.cat(rec_all_lower, dim=1) * self.vqvae_latent_scale
except RuntimeError as exc:
shape_summary = {
"upper": [tuple(t.shape) for t in rec_all_upper],
"hands": [tuple(t.shape) for t in rec_all_hands],
"lower": [tuple(t.shape) for t in rec_all_lower],
}
logger.error("Failed to concatenate latent segments: %s | shapes=%s", exc, shape_summary)
raise
rec_upper = self.vq_model_upper.latent2origin(rec_all_upper)[0]
rec_hands = self.vq_model_hands.latent2origin(rec_all_hands)[0]
rec_lower = self.vq_model_lower.latent2origin(rec_all_lower)[0]
if self.use_trans:
rec_trans_v = rec_lower[...,-3:]
rec_trans_v = rec_trans_v * self.trans_std + self.trans_mean
rec_trans = torch.zeros_like(rec_trans_v)
rec_trans = torch.cumsum(rec_trans_v, dim=-2)
rec_trans[...,1]=rec_trans_v[...,1]
rec_lower = rec_lower[...,:-3]
if self.args.pose_norm:
rec_upper = rec_upper * self.std_upper + self.mean_upper
rec_hands = rec_hands * self.std_hands + self.mean_hands
rec_lower = rec_lower * self.std_lower + self.mean_lower
n = n - remain
tar_pose = tar_pose[:, :n, :]
tar_exps = tar_exps[:, :n, :]
tar_trans = tar_trans[:, :n, :]
tar_beta = tar_beta[:, :n, :]
rec_exps = tar_exps
#rec_pose_jaw = rec_face[:, :, :6]
rec_pose_legs = rec_lower[:, :, :54]
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n)
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n)
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n)
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
rec_pose[:, 66:69] = tar_pose.reshape(bs*n, 55*3)[:, 66:69]
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
return {
'rec_pose': rec_pose,
'rec_trans': rec_trans,
'tar_pose': tar_pose,
'tar_exps': tar_exps,
'tar_beta': tar_beta,
'tar_trans': tar_trans,
'rec_exps': rec_exps,
}
def test_demo(self, epoch):
'''
input audio and text, output motion
do not calculate loss and metric
save video
'''
print("=== Starting test_demo ===")
results_save_path = self.checkpoint_path + f"/{epoch}/"
if os.path.exists(results_save_path):
import shutil
shutil.rmtree(results_save_path)
os.makedirs(results_save_path)
start_time = time.time()
total_length = 0
print("Setting models to eval mode...")
self.model.eval()
self.smplx.eval()
# self.eval_copy.eval()
print("Starting inference loop...")
with torch.no_grad():
for its, batch_data in enumerate(self.test_loader):
print(f"Processing batch {its}...")
print("Loading data...")
loaded_data = self._load_data(batch_data)
print("Running model inference (this may take several minutes on CPU)...")
net_out = self._g_test(loaded_data)
print("Model inference complete!")
tar_pose = net_out['tar_pose']
rec_pose = net_out['rec_pose']
tar_exps = net_out['tar_exps']
tar_beta = net_out['tar_beta']
rec_trans = net_out['rec_trans']
tar_trans = net_out['tar_trans']
rec_exps = net_out['rec_exps']
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
if (30/self.args.pose_fps) != 1:
assert 30%self.args.pose_fps == 0
n *= int(30/self.args.pose_fps)
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
tar_pose_np = tar_pose.detach().cpu().numpy()
rec_pose_np = rec_pose.detach().cpu().numpy()
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
gt_npz = np.load("./demo/examples/2_scott_0_1_1.npz", allow_pickle=True)
print("Saving results to npz file...")
results_npz_file_save_path = results_save_path+f"result_{self.time_name_expend}"+'.npz'
np.savez(results_npz_file_save_path,
betas=gt_npz["betas"],
poses=rec_pose_np,
expressions=rec_exp_np,
trans=rec_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30,
)
total_length += n
print("Rendering video (this may take 1-2 minutes)...")
render_vid_path = other_tools_hf.render_one_sequence_no_gt(
results_npz_file_save_path,
# results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
results_save_path,
self.audio_path,
self.args.data_path_1+"smplx_models/",
use_matplotlib = False,
args = self.args,
)
print(f"Video rendered successfully: {render_vid_path}")
result = (
render_vid_path,
results_npz_file_save_path,
)
end_time = time.time() - start_time
print(f"=== Complete! Total time: {int(end_time)} seconds ===")
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
return result
@logger.catch
def gesturelsm(audio_path, sample_stratege=None):
print("\n" + "="*60)
print("STARTING GESTURE GENERATION")
print("="*60)
# Set the config path for demo
import sys
sys.argv = ['demo.py', '--config', 'configs/shortcut_rvqvae_128_hf.yaml']
args, cfg = config.parse_args()
print(f"Sample strategy: {sample_stratege}")
#os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
if not sys.warnoptions:
warnings.simplefilter("ignore")
# dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)
#logger_tools.set_args_and_logger(args, rank)
other_tools_hf.set_random_seed(args)
other_tools_hf.print_exp_info(args)
# return one intance of trainer
try:
print("Creating trainer instance...")
trainer = BaseTrainer(args, cfg, ap=audio_path)
print("Loading model checkpoint...")
other_tools.load_checkpoints(trainer.model, args.test_ckpt, args.g_name)
print("Checkpoint loaded successfully!")
result = trainer.test_demo(999)
if isinstance(result, tuple) and len(result) == 2:
return result
# If a single path or None returned, expand to two outputs
return (result, None)
except Exception as e:
logger.exception("GestureLSM demo inference failed")
# Return two Nones to satisfy Gradio output schema
return (None, None)
examples = [
["demo/examples/2_scott_0_1_1.wav"],
["demo/examples/2_scott_0_2_2.wav"],
["demo/examples/2_scott_0_3_3.wav"],
["demo/examples/2_scott_0_4_4.wav"],
["demo/examples/2_scott_0_5_5.wav"],
]
demo = gr.Interface(
gesturelsm, # function
inputs=[
gr.Audio(),
], # input type
outputs=[
gr.Video(format="mp4", visible=True),
gr.File(label="download motion and visualize in blender")
],
title='GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling',
description="1. Upload your audio. <br/>\
2. Then, sit back and wait for the rendering to happen! This may take a while (e.g. 1-4 minutes) <br/>\
3. After, you can view the videos. <br/>\
4. Notice that we use a fix face animation, our method only produce body motion. <br/>\
5. Use DDPM sample strategy will generate a better result, while it will take more inference time. \
",
article="Project links: [GestureLSM](https://github.com/andypinxinliu/GestureLSM). <br/>\
Reference links: [EMAGE](https://pantomatrix.github.io/EMAGE/). ",
examples=examples,
)
if __name__ == "__main__":
os.environ["MASTER_ADDR"]='127.0.0.3'
os.environ["MASTER_PORT"]='8678'
#os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
demo.launch(server_name="0.0.0.0",share=True)
|