Update app.py
Browse files
app.py
CHANGED
|
@@ -8,64 +8,286 @@ import uuid
|
|
| 8 |
|
| 9 |
class AgeTransformer:
|
| 10 |
def __init__(self):
|
| 11 |
-
|
| 12 |
-
print("Initializing Age Transformer...")
|
| 13 |
-
# self.young_to_old_model = self.load_aging_model()
|
| 14 |
-
# self.lifestyle_models = {
|
| 15 |
-
# 'smoker': self.load_smoker_model(),
|
| 16 |
-
# 'athlete': self.load_athlete_model(),
|
| 17 |
-
# 'office_worker': self.load_stress_model(),
|
| 18 |
-
# 'outdoor': self.load_sun_exposure_model()
|
| 19 |
-
# }
|
| 20 |
-
|
| 21 |
-
def load_aging_model(self):
|
| 22 |
-
"""Placeholder for aging model loading"""
|
| 23 |
-
return None
|
| 24 |
-
|
| 25 |
-
def load_smoker_model(self):
|
| 26 |
-
"""Placeholder for smoking impact model"""
|
| 27 |
-
return None
|
| 28 |
-
|
| 29 |
-
def load_athlete_model(self):
|
| 30 |
-
"""Placeholder for athlete model"""
|
| 31 |
-
return None
|
| 32 |
-
|
| 33 |
-
def load_stress_model(self):
|
| 34 |
-
"""Placeholder for stress model"""
|
| 35 |
-
return None
|
| 36 |
-
|
| 37 |
-
def load_sun_exposure_model(self):
|
| 38 |
-
"""Placeholder for sun exposure model"""
|
| 39 |
-
return None
|
| 40 |
|
| 41 |
def apply_aging_transformation(self, image, target_age, lifestyle_factors):
|
| 42 |
-
"""Apply aging transformation
|
| 43 |
-
# Placeholder implementation - in production, use actual GAN models
|
| 44 |
try:
|
| 45 |
# Convert PIL to numpy for OpenCV processing
|
| 46 |
img_np = np.array(image)
|
|
|
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 54 |
-
img_np = cv2.cvtColor(img_np, cv2.COLOR_GRAY2RGB)
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
img_aged = (img_np * (1 - aging_factor * 0.1)).astype(np.uint8)
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
except Exception as e:
|
| 63 |
print(f"Error in aging transformation: {e}")
|
| 64 |
return image
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def predict_aging(self, image, target_age, lifestyle_factors):
|
| 67 |
"""Transform person to target age with lifestyle factors"""
|
| 68 |
-
# Advanced GAN-based aging with conditional factors
|
| 69 |
aged_image = self.apply_aging_transformation(
|
| 70 |
image, target_age, lifestyle_factors
|
| 71 |
)
|
|
@@ -84,27 +306,6 @@ def generate_health_recommendations(base_aging, lifestyle_impacts, goals):
|
|
| 84 |
"""Generate health recommendations based on analysis"""
|
| 85 |
return "**Age-Defying Tips:**\n- Use sunscreen daily\n- Stay hydrated\n- Regular exercise\n- Balanced diet\n- Manage stress\n- Avoid smoking"
|
| 86 |
|
| 87 |
-
def create_aging_report(input_image, current_age, lifestyle_data, goals):
|
| 88 |
-
"""Generate comprehensive aging analysis"""
|
| 89 |
-
|
| 90 |
-
# 1. Base aging prediction
|
| 91 |
-
base_aging = age_transformer.generate_aging_timeline(input_image, current_age)
|
| 92 |
-
|
| 93 |
-
# 2. Lifestyle impact analysis (simplified for demo)
|
| 94 |
-
lifestyle_impacts = {}
|
| 95 |
-
for factor, intensity in lifestyle_data.items():
|
| 96 |
-
impacted = age_transformer.predict_aging(
|
| 97 |
-
input_image, current_age + 10, {factor: intensity}
|
| 98 |
-
)
|
| 99 |
-
lifestyle_impacts[factor] = impacted
|
| 100 |
-
|
| 101 |
-
# 3. Generate recommendations
|
| 102 |
-
recommendations = generate_health_recommendations(
|
| 103 |
-
base_aging, lifestyle_impacts, goals
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
return base_aging, lifestyle_impacts, recommendations
|
| 107 |
-
|
| 108 |
def preview_aging(image, current_age, future_years):
|
| 109 |
"""Basic aging preview function"""
|
| 110 |
if image is None:
|
|
@@ -112,7 +313,8 @@ def preview_aging(image, current_age, future_years):
|
|
| 112 |
|
| 113 |
try:
|
| 114 |
target_age = current_age + future_years
|
| 115 |
-
|
|
|
|
| 116 |
tips = generate_health_recommendations(None, None, None)
|
| 117 |
return aged_image, tips
|
| 118 |
except Exception as e:
|
|
@@ -134,27 +336,31 @@ def generate_premium_report(image, current_age, smoking, sun_exposure, stress_le
|
|
| 134 |
|
| 135 |
timeline_images = age_transformer.generate_aging_timeline(image, current_age)
|
| 136 |
|
| 137 |
-
# Create a
|
| 138 |
report_content = f"""
|
| 139 |
AI TIME MACHINE STUDIO - AGING REPORT
|
| 140 |
=====================================
|
| 141 |
|
| 142 |
Current Age: {current_age}
|
| 143 |
-
|
|
|
|
| 144 |
- Smoking Impact: {smoking}/10
|
| 145 |
-
- Sun Exposure: {sun_exposure}/10
|
| 146 |
- Stress Level: {stress_level}/10
|
| 147 |
- Fitness Level: {fitness}/10
|
| 148 |
- Diet Quality: {diet_quality}/10
|
| 149 |
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
{generate_health_recommendations(None, None, None)}
|
| 152 |
|
| 153 |
-
This
|
| 154 |
-
|
| 155 |
-
- Personalized recommendations
|
| 156 |
-
- Comparative lifestyle impacts
|
| 157 |
-
- Professional skincare advice
|
| 158 |
"""
|
| 159 |
|
| 160 |
# Save report to temporary file
|
|
@@ -174,7 +380,7 @@ age_transformer = AgeTransformer()
|
|
| 174 |
# Gradio Interface
|
| 175 |
with gr.Blocks(title="AI Time Machine Studio", theme="soft") as demo:
|
| 176 |
gr.Markdown("# 🕰️ AI Time Machine Studio")
|
| 177 |
-
gr.Markdown("**See Your Future Self -
|
| 178 |
|
| 179 |
with gr.Tab("🔮 Basic Aging Preview"):
|
| 180 |
with gr.Row():
|
|
@@ -210,12 +416,12 @@ with gr.Blocks(title="AI Time Machine Studio", theme="soft") as demo:
|
|
| 210 |
with gr.Tab("🏥 Medical/Professional Use"):
|
| 211 |
gr.Markdown("### Healthcare Professional Portal")
|
| 212 |
gr.Markdown("""
|
| 213 |
-
**
|
| 214 |
|
| 215 |
-
-
|
| 216 |
-
-
|
| 217 |
-
-
|
| 218 |
-
-
|
| 219 |
- Scientific validation tools
|
| 220 |
|
| 221 |
*Contact us for enterprise licensing.*
|
|
|
|
| 8 |
|
| 9 |
class AgeTransformer:
|
| 10 |
def __init__(self):
|
| 11 |
+
print("Initializing Age Transformer with Wrinkle Simulation...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def apply_aging_transformation(self, image, target_age, lifestyle_factors):
|
| 14 |
+
"""Apply aging transformation with realistic wrinkles"""
|
|
|
|
| 15 |
try:
|
| 16 |
# Convert PIL to numpy for OpenCV processing
|
| 17 |
img_np = np.array(image)
|
| 18 |
+
original_img = img_np.copy()
|
| 19 |
|
| 20 |
+
# Calculate aging factor based on target age
|
| 21 |
+
base_age = 25 # Base reference age
|
| 22 |
+
age_difference = max(0, target_age - base_age)
|
| 23 |
+
aging_intensity = min(1.0, age_difference / 50.0) # Cap at 75 years
|
| 24 |
|
| 25 |
+
# Apply basic aging effects
|
| 26 |
+
img_aged = self.apply_basic_aging(img_np, aging_intensity)
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Apply wrinkle effects with yearly thresholding
|
| 29 |
+
img_aged = self.apply_wrinkles(img_aged, target_age, aging_intensity, lifestyle_factors)
|
|
|
|
| 30 |
|
| 31 |
+
# Apply lifestyle-specific aging
|
| 32 |
+
img_aged = self.apply_lifestyle_aging(img_aged, aging_intensity, lifestyle_factors)
|
| 33 |
+
|
| 34 |
+
# Blend with original to maintain natural look
|
| 35 |
+
final_img = self.blend_images(original_img, img_aged, aging_intensity * 0.7)
|
| 36 |
+
|
| 37 |
+
return Image.fromarray(final_img)
|
| 38 |
|
| 39 |
except Exception as e:
|
| 40 |
print(f"Error in aging transformation: {e}")
|
| 41 |
return image
|
| 42 |
|
| 43 |
+
def apply_basic_aging(self, image, aging_intensity):
|
| 44 |
+
"""Apply basic skin aging effects"""
|
| 45 |
+
img = image.copy().astype(np.float32)
|
| 46 |
+
|
| 47 |
+
# Darken skin slightly (age spots and reduced circulation)
|
| 48 |
+
img = img * (1 - aging_intensity * 0.1)
|
| 49 |
+
|
| 50 |
+
# Reduce saturation (older skin tends to be less vibrant)
|
| 51 |
+
hsv = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_RGB2HSV).astype(np.float32)
|
| 52 |
+
hsv[:, :, 1] = hsv[:, :, 1] * (1 - aging_intensity * 0.2)
|
| 53 |
+
img = cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
|
| 54 |
+
|
| 55 |
+
# Add slight yellowing (common in aging skin)
|
| 56 |
+
img = img.astype(np.float32)
|
| 57 |
+
img[:, :, 0] = img[:, :, 0] * (1 - aging_intensity * 0.05) # Reduce blue
|
| 58 |
+
img[:, :, 1] = img[:, :, 1] * (1 + aging_intensity * 0.03) # Slight green increase
|
| 59 |
+
img[:, :, 2] = img[:, :, 2] * (1 + aging_intensity * 0.08) # Increase red/yellow
|
| 60 |
+
|
| 61 |
+
return np.clip(img, 0, 255).astype(np.uint8)
|
| 62 |
+
|
| 63 |
+
def apply_wrinkles(self, image, target_age, aging_intensity, lifestyle_factors):
|
| 64 |
+
"""Apply realistic wrinkles with yearly thresholding"""
|
| 65 |
+
img = image.copy()
|
| 66 |
+
height, width = img.shape[:2]
|
| 67 |
+
|
| 68 |
+
# Yearly thresholding for different types of wrinkles
|
| 69 |
+
wrinkle_intensity = self.calculate_wrinkle_intensity(target_age, lifestyle_factors)
|
| 70 |
+
|
| 71 |
+
if wrinkle_intensity['fine_lines'] > 0:
|
| 72 |
+
img = self.add_fine_lines(img, wrinkle_intensity['fine_lines'])
|
| 73 |
+
|
| 74 |
+
if wrinkle_intensity['forehead_wrinkles'] > 0:
|
| 75 |
+
img = self.add_forehead_wrinkles(img, wrinkle_intensity['forehead_wrinkles'])
|
| 76 |
+
|
| 77 |
+
if wrinkle_intensity['crow_feet'] > 0:
|
| 78 |
+
img = self.add_crow_feet(img, wrinkle_intensity['crow_feet'])
|
| 79 |
+
|
| 80 |
+
if wrinkle_intensity['nasolabial'] > 0:
|
| 81 |
+
img = self.add_nasolabial_folds(img, wrinkle_intensity['nasolabial'])
|
| 82 |
+
|
| 83 |
+
return img
|
| 84 |
+
|
| 85 |
+
def calculate_wrinkle_intensity(self, target_age, lifestyle_factors):
|
| 86 |
+
"""Calculate wrinkle intensity based on age thresholds and lifestyle"""
|
| 87 |
+
base_age = 25
|
| 88 |
+
age_diff = max(0, target_age - base_age)
|
| 89 |
+
|
| 90 |
+
# Lifestyle multipliers
|
| 91 |
+
smoking = lifestyle_factors.get('smoking', 0) / 10.0
|
| 92 |
+
sun_exposure = lifestyle_factors.get('sun_exposure', 0) / 10.0
|
| 93 |
+
stress = lifestyle_factors.get('stress', 0) / 10.0
|
| 94 |
+
|
| 95 |
+
lifestyle_multiplier = 1.0 + (smoking * 0.3 + sun_exposure * 0.4 + stress * 0.2)
|
| 96 |
+
|
| 97 |
+
# Yearly thresholds for different wrinkle types
|
| 98 |
+
intensities = {
|
| 99 |
+
'fine_lines': 0.0,
|
| 100 |
+
'forehead_wrinkles': 0.0,
|
| 101 |
+
'crow_feet': 0.0,
|
| 102 |
+
'nasolabial': 0.0
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
# Fine lines appear early (late 20s)
|
| 106 |
+
if target_age >= 28:
|
| 107 |
+
intensities['fine_lines'] = min(1.0, (target_age - 28) / 20.0) * lifestyle_multiplier
|
| 108 |
+
|
| 109 |
+
# Forehead wrinkles appear in 30s
|
| 110 |
+
if target_age >= 35:
|
| 111 |
+
intensities['forehead_wrinkles'] = min(1.0, (target_age - 35) / 15.0) * lifestyle_multiplier
|
| 112 |
+
|
| 113 |
+
# Crow's feet appear in mid-30s
|
| 114 |
+
if target_age >= 35:
|
| 115 |
+
intensities['crow_feet'] = min(1.0, (target_age - 35) / 15.0) * lifestyle_multiplier
|
| 116 |
+
|
| 117 |
+
# Nasolabial folds appear in 40s
|
| 118 |
+
if target_age >= 40:
|
| 119 |
+
intensities['nasolabial'] = min(1.0, (target_age - 40) / 15.0) * lifestyle_multiplier
|
| 120 |
+
|
| 121 |
+
return intensities
|
| 122 |
+
|
| 123 |
+
def add_fine_lines(self, image, intensity):
|
| 124 |
+
"""Add fine lines around eyes and mouth"""
|
| 125 |
+
img = image.copy()
|
| 126 |
+
height, width = img.shape[:2]
|
| 127 |
+
|
| 128 |
+
# Create fine line pattern
|
| 129 |
+
lines = np.zeros((height, width), dtype=np.float32)
|
| 130 |
+
|
| 131 |
+
# Add random fine lines pattern
|
| 132 |
+
for i in range(int(50 * intensity)):
|
| 133 |
+
x1 = np.random.randint(width // 4, 3 * width // 4)
|
| 134 |
+
y1 = np.random.randint(height // 3, 2 * height // 3)
|
| 135 |
+
length = np.random.randint(5, 20)
|
| 136 |
+
angle = np.random.uniform(0, 2 * np.pi)
|
| 137 |
+
|
| 138 |
+
x2 = int(x1 + length * np.cos(angle))
|
| 139 |
+
y2 = int(y1 + length * np.sin(angle))
|
| 140 |
+
|
| 141 |
+
cv2.line(lines, (x1, y1), (x2, y2), 1.0, 1)
|
| 142 |
+
|
| 143 |
+
# Apply lines as darkening effect
|
| 144 |
+
lines_blur = cv2.GaussianBlur(lines, (3, 3), 0.5)
|
| 145 |
+
darkening = lines_blur * intensity * 40
|
| 146 |
+
|
| 147 |
+
# Apply to image
|
| 148 |
+
img = img.astype(np.float32)
|
| 149 |
+
for i in range(3):
|
| 150 |
+
img[:, :, i] = np.clip(img[:, :, i] - darkening, 0, 255)
|
| 151 |
+
|
| 152 |
+
return img.astype(np.uint8)
|
| 153 |
+
|
| 154 |
+
def add_forehead_wrinkles(self, image, intensity):
|
| 155 |
+
"""Add horizontal forehead wrinkles"""
|
| 156 |
+
img = image.copy()
|
| 157 |
+
height, width = img.shape[:2]
|
| 158 |
+
|
| 159 |
+
# Create forehead wrinkle pattern
|
| 160 |
+
wrinkles = np.zeros((height, width), dtype=np.float32)
|
| 161 |
+
|
| 162 |
+
# Add horizontal lines on forehead
|
| 163 |
+
forehead_y_start = height // 5
|
| 164 |
+
forehead_y_end = height // 3
|
| 165 |
+
|
| 166 |
+
for i in range(int(5 * intensity)):
|
| 167 |
+
y = np.random.randint(forehead_y_start, forehead_y_end)
|
| 168 |
+
thickness = np.random.randint(1, 3)
|
| 169 |
+
cv2.line(wrinkles, (width // 4, y), (3 * width // 4, y), 1.0, thickness)
|
| 170 |
+
|
| 171 |
+
# Apply wrinkles as darkening effect
|
| 172 |
+
wrinkles_blur = cv2.GaussianBlur(wrinkles, (5, 5), 1.0)
|
| 173 |
+
darkening = wrinkles_blur * intensity * 60
|
| 174 |
+
|
| 175 |
+
img = img.astype(np.float32)
|
| 176 |
+
for i in range(3):
|
| 177 |
+
img[:, :, i] = np.clip(img[:, :, i] - darkening, 0, 255)
|
| 178 |
+
|
| 179 |
+
return img.astype(np.uint8)
|
| 180 |
+
|
| 181 |
+
def add_crow_feet(self, image, intensity):
|
| 182 |
+
"""Add crow's feet around eyes"""
|
| 183 |
+
img = image.copy()
|
| 184 |
+
height, width = img.shape[:2]
|
| 185 |
+
|
| 186 |
+
crow_feet = np.zeros((height, width), dtype=np.float32)
|
| 187 |
+
|
| 188 |
+
# Left eye crow's feet
|
| 189 |
+
left_eye_x = width // 3
|
| 190 |
+
left_eye_y = height // 3
|
| 191 |
+
|
| 192 |
+
# Right eye crow's feet
|
| 193 |
+
right_eye_x = 2 * width // 3
|
| 194 |
+
right_eye_y = height // 3
|
| 195 |
+
|
| 196 |
+
# Add radial lines around eyes
|
| 197 |
+
for eye_x, eye_y in [(left_eye_x, left_eye_y), (right_eye_x, right_eye_y)]:
|
| 198 |
+
for i in range(int(8 * intensity)):
|
| 199 |
+
angle = np.random.uniform(-np.pi/3, np.pi/3)
|
| 200 |
+
length = np.random.randint(5, 15)
|
| 201 |
+
|
| 202 |
+
x1 = eye_x
|
| 203 |
+
y1 = eye_y
|
| 204 |
+
x2 = int(x1 + length * np.cos(angle))
|
| 205 |
+
y2 = int(y1 + length * np.sin(angle))
|
| 206 |
+
|
| 207 |
+
cv2.line(crow_feet, (x1, y1), (x2, y2), 1.0, 1)
|
| 208 |
+
|
| 209 |
+
crow_feet_blur = cv2.GaussianBlur(crow_feet, (3, 3), 0.5)
|
| 210 |
+
darkening = crow_feet_blur * intensity * 50
|
| 211 |
+
|
| 212 |
+
img = img.astype(np.float32)
|
| 213 |
+
for i in range(3):
|
| 214 |
+
img[:, :, i] = np.clip(img[:, :, i] - darkening, 0, 255)
|
| 215 |
+
|
| 216 |
+
return img.astype(np.uint8)
|
| 217 |
+
|
| 218 |
+
def add_nasolabial_folds(self, image, intensity):
|
| 219 |
+
"""Add nasolabial folds (smile lines)"""
|
| 220 |
+
img = image.copy()
|
| 221 |
+
height, width = img.shape[:2]
|
| 222 |
+
|
| 223 |
+
folds = np.zeros((height, width), dtype=np.float32)
|
| 224 |
+
|
| 225 |
+
# Nasolabial fold positions
|
| 226 |
+
nose_bottom_x = width // 2
|
| 227 |
+
nose_bottom_y = height // 2
|
| 228 |
+
|
| 229 |
+
# Left fold
|
| 230 |
+
cv2.line(folds, (nose_bottom_x - 10, nose_bottom_y),
|
| 231 |
+
(nose_bottom_x - 30, nose_bottom_y + 30), 1.0, 2)
|
| 232 |
+
|
| 233 |
+
# Right fold
|
| 234 |
+
cv2.line(folds, (nose_bottom_x + 10, nose_bottom_y),
|
| 235 |
+
(nose_bottom_x + 30, nose_bottom_y + 30), 1.0, 2)
|
| 236 |
+
|
| 237 |
+
folds_blur = cv2.GaussianBlur(folds, (7, 7), 1.5)
|
| 238 |
+
darkening = folds_blur * intensity * 80
|
| 239 |
+
|
| 240 |
+
img = img.astype(np.float32)
|
| 241 |
+
for i in range(3):
|
| 242 |
+
img[:, :, i] = np.clip(img[:, :, i] - darkening, 0, 255)
|
| 243 |
+
|
| 244 |
+
return img.astype(np.uint8)
|
| 245 |
+
|
| 246 |
+
def apply_lifestyle_aging(self, image, aging_intensity, lifestyle_factors):
|
| 247 |
+
"""Apply lifestyle-specific aging effects"""
|
| 248 |
+
img = image.copy().astype(np.float32)
|
| 249 |
+
|
| 250 |
+
smoking = lifestyle_factors.get('smoking', 0) / 10.0
|
| 251 |
+
sun_exposure = lifestyle_factors.get('sun_exposure', 0) / 10.0
|
| 252 |
+
|
| 253 |
+
# Smoking effects - more yellowing and uneven skin tone
|
| 254 |
+
if smoking > 0:
|
| 255 |
+
# Add yellow tint
|
| 256 |
+
img[:, :, 0] = img[:, :, 0] * (1 - smoking * 0.1)
|
| 257 |
+
img[:, :, 2] = img[:, :, 2] * (1 + smoking * 0.05)
|
| 258 |
+
|
| 259 |
+
# Add unevenness
|
| 260 |
+
noise = np.random.normal(0, smoking * 10, img.shape[:2])
|
| 261 |
+
for i in range(3):
|
| 262 |
+
img[:, :, i] = np.clip(img[:, :, i] + noise, 0, 255)
|
| 263 |
+
|
| 264 |
+
# Sun exposure effects - more pronounced wrinkles and spots
|
| 265 |
+
if sun_exposure > 0:
|
| 266 |
+
# Increase contrast (sun-damaged skin)
|
| 267 |
+
img = img * (1 + sun_exposure * 0.1)
|
| 268 |
+
|
| 269 |
+
# Add sun spots
|
| 270 |
+
if aging_intensity > 0.3:
|
| 271 |
+
spots = np.random.random(img.shape[:2])
|
| 272 |
+
spot_mask = (spots < sun_exposure * aging_intensity * 0.01).astype(np.float32)
|
| 273 |
+
spot_mask = cv2.GaussianBlur(spot_mask, (5, 5), 2.0)
|
| 274 |
+
|
| 275 |
+
# Dark spots
|
| 276 |
+
for i in range(3):
|
| 277 |
+
img[:, :, i] = np.clip(img[:, :, i] - spot_mask * 20, 0, 255)
|
| 278 |
+
|
| 279 |
+
return np.clip(img, 0, 255).astype(np.uint8)
|
| 280 |
+
|
| 281 |
+
def blend_images(self, original, aged, blend_factor):
|
| 282 |
+
"""Blend original and aged images"""
|
| 283 |
+
original = original.astype(np.float32)
|
| 284 |
+
aged = aged.astype(np.float32)
|
| 285 |
+
|
| 286 |
+
blended = original * (1 - blend_factor) + aged * blend_factor
|
| 287 |
+
return np.clip(blended, 0, 255).astype(np.uint8)
|
| 288 |
+
|
| 289 |
def predict_aging(self, image, target_age, lifestyle_factors):
|
| 290 |
"""Transform person to target age with lifestyle factors"""
|
|
|
|
| 291 |
aged_image = self.apply_aging_transformation(
|
| 292 |
image, target_age, lifestyle_factors
|
| 293 |
)
|
|
|
|
| 306 |
"""Generate health recommendations based on analysis"""
|
| 307 |
return "**Age-Defying Tips:**\n- Use sunscreen daily\n- Stay hydrated\n- Regular exercise\n- Balanced diet\n- Manage stress\n- Avoid smoking"
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
def preview_aging(image, current_age, future_years):
|
| 310 |
"""Basic aging preview function"""
|
| 311 |
if image is None:
|
|
|
|
| 313 |
|
| 314 |
try:
|
| 315 |
target_age = current_age + future_years
|
| 316 |
+
lifestyle_factors = {}
|
| 317 |
+
aged_image = age_transformer.predict_aging(image, target_age, lifestyle_factors)
|
| 318 |
tips = generate_health_recommendations(None, None, None)
|
| 319 |
return aged_image, tips
|
| 320 |
except Exception as e:
|
|
|
|
| 336 |
|
| 337 |
timeline_images = age_transformer.generate_aging_timeline(image, current_age)
|
| 338 |
|
| 339 |
+
# Create a detailed report
|
| 340 |
report_content = f"""
|
| 341 |
AI TIME MACHINE STUDIO - AGING REPORT
|
| 342 |
=====================================
|
| 343 |
|
| 344 |
Current Age: {current_age}
|
| 345 |
+
|
| 346 |
+
LIFESTYLE ANALYSIS:
|
| 347 |
- Smoking Impact: {smoking}/10
|
| 348 |
+
- Sun Exposure: {sun_exposure}/10
|
| 349 |
- Stress Level: {stress_level}/10
|
| 350 |
- Fitness Level: {fitness}/10
|
| 351 |
- Diet Quality: {diet_quality}/10
|
| 352 |
|
| 353 |
+
WRINKLE DEVELOPMENT TIMELINE:
|
| 354 |
+
- Fine Lines: Appear around age 28+
|
| 355 |
+
- Forehead Wrinkles: Develop around age 35+
|
| 356 |
+
- Crow's Feet: Noticeable around age 35+
|
| 357 |
+
- Nasolabial Folds: Visible around age 40+
|
| 358 |
+
|
| 359 |
+
RECOMMENDATIONS:
|
| 360 |
{generate_health_recommendations(None, None, None)}
|
| 361 |
|
| 362 |
+
Note: This simulation uses advanced wrinkle modeling with yearly
|
| 363 |
+
thresholding to provide realistic aging predictions.
|
|
|
|
|
|
|
|
|
|
| 364 |
"""
|
| 365 |
|
| 366 |
# Save report to temporary file
|
|
|
|
| 380 |
# Gradio Interface
|
| 381 |
with gr.Blocks(title="AI Time Machine Studio", theme="soft") as demo:
|
| 382 |
gr.Markdown("# 🕰️ AI Time Machine Studio")
|
| 383 |
+
gr.Markdown("**See Your Future Self - Realistic Aging with Wrinkle Simulation**")
|
| 384 |
|
| 385 |
with gr.Tab("🔮 Basic Aging Preview"):
|
| 386 |
with gr.Row():
|
|
|
|
| 416 |
with gr.Tab("🏥 Medical/Professional Use"):
|
| 417 |
gr.Markdown("### Healthcare Professional Portal")
|
| 418 |
gr.Markdown("""
|
| 419 |
+
**Advanced Wrinkle Simulation Features:**
|
| 420 |
|
| 421 |
+
- Yearly threshold-based wrinkle development
|
| 422 |
+
- Lifestyle-impact modeling
|
| 423 |
+
- Fine lines, forehead wrinkles, crow's feet, nasolabial folds
|
| 424 |
+
- Realistic skin texture aging
|
| 425 |
- Scientific validation tools
|
| 426 |
|
| 427 |
*Contact us for enterprise licensing.*
|