Update app.py
Browse files
app.py
CHANGED
|
@@ -8,9 +8,115 @@ import rembg
|
|
| 8 |
from io import BytesIO
|
| 9 |
import os
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
class ImageStoryteller:
|
| 12 |
-
def __init__(self):
|
| 13 |
-
print("Initializing Image Storyteller with CLIP-ViT...")
|
| 14 |
|
| 15 |
# Load CLIP model for image understanding
|
| 16 |
try:
|
|
@@ -22,6 +128,26 @@ class ImageStoryteller:
|
|
| 22 |
self.clip_model = None
|
| 23 |
self.clip_processor = None
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Common objects for scene understanding
|
| 26 |
self.common_objects = [
|
| 27 |
'person', 'people', 'human', 'man', 'woman', 'child', 'baby',
|
|
@@ -110,46 +236,136 @@ class ImageStoryteller:
|
|
| 110 |
return self.fallback_image_analysis(image)
|
| 111 |
|
| 112 |
def fallback_image_analysis(self, image):
|
| 113 |
-
"""Fallback
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
return {
|
| 149 |
-
'
|
| 150 |
-
'
|
| 151 |
-
'
|
|
|
|
| 152 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
def create_analysis_overlay(self, image, analysis_result):
|
| 155 |
"""Create analysis overlay in bottom left with white text on black background"""
|
|
@@ -201,28 +417,28 @@ class ImageStoryteller:
|
|
| 201 |
|
| 202 |
return Image.fromarray(overlay)
|
| 203 |
|
| 204 |
-
def generate_story(self, analysis_result, image_size):
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
|
| 225 |
-
|
| 226 |
|
| 227 |
# def create_story_overlay(self, image, story):
|
| 228 |
# """Create story overlay in bottom left with white text on black background"""
|
|
@@ -435,9 +651,9 @@ def load_selected_example(evt: gr.SelectData):
|
|
| 435 |
return None
|
| 436 |
|
| 437 |
# Create Gradio interface
|
| 438 |
-
with gr.Blocks(title="
|
| 439 |
-
gr.Markdown("#
|
| 440 |
-
gr.Markdown("**Upload an image to
|
| 441 |
|
| 442 |
# Load example images
|
| 443 |
example_images_list = get_example_images()
|
|
|
|
| 8 |
from io import BytesIO
|
| 9 |
import os
|
| 10 |
|
| 11 |
+
# class ImageStoryteller:
|
| 12 |
+
# def __init__(self):
|
| 13 |
+
# print("Initializing Image Storyteller with CLIP-ViT...")
|
| 14 |
+
|
| 15 |
+
# # Load CLIP model for image understanding
|
| 16 |
+
# try:
|
| 17 |
+
# self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 18 |
+
# self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 19 |
+
# print("CLIP-ViT model loaded successfully!")
|
| 20 |
+
# except Exception as e:
|
| 21 |
+
# print(f"CLIP loading failed: {e}")
|
| 22 |
+
# self.clip_model = None
|
| 23 |
+
# self.clip_processor = None
|
| 24 |
+
|
| 25 |
+
# # Common objects for scene understanding
|
| 26 |
+
# self.common_objects = [
|
| 27 |
+
# 'person', 'people', 'human', 'man', 'woman', 'child', 'baby',
|
| 28 |
+
# 'dog', 'cat', 'animal', 'bird', 'horse', 'cow', 'sheep',
|
| 29 |
+
# 'car', 'vehicle', 'bus', 'truck', 'bicycle', 'motorcycle',
|
| 30 |
+
# 'building', 'house', 'skyscraper', 'architecture',
|
| 31 |
+
# 'tree', 'forest', 'nature', 'mountain', 'sky', 'clouds',
|
| 32 |
+
# 'water', 'ocean', 'river', 'lake', 'beach',
|
| 33 |
+
# 'food', 'fruit', 'vegetable', 'meal',
|
| 34 |
+
# 'indoor', 'outdoor', 'urban', 'rural'
|
| 35 |
+
# ]
|
| 36 |
+
|
| 37 |
+
# # Scene categories for classification
|
| 38 |
+
# self.scene_categories = [
|
| 39 |
+
# "portrait", "landscape", "cityscape", "indoor scene", "outdoor scene",
|
| 40 |
+
# "nature", "urban", "beach", "mountain", "forest", "street",
|
| 41 |
+
# "party", "celebration", "sports", "action", "still life",
|
| 42 |
+
# "abstract", "art", "architecture", "wildlife", "pet"
|
| 43 |
+
# ]
|
| 44 |
+
|
| 45 |
+
# def analyze_image_with_clip(self, image):
|
| 46 |
+
# """Analyze image using CLIP to understand content and scene"""
|
| 47 |
+
# if self.clip_model is None or self.clip_processor is None:
|
| 48 |
+
# return self.fallback_image_analysis(image)
|
| 49 |
+
|
| 50 |
+
# try:
|
| 51 |
+
# # Convert PIL to RGB
|
| 52 |
+
# image_rgb = image.convert('RGB')
|
| 53 |
+
|
| 54 |
+
# # Analyze objects in the image
|
| 55 |
+
# object_inputs = self.clip_processor(
|
| 56 |
+
# text=self.common_objects,
|
| 57 |
+
# images=image_rgb,
|
| 58 |
+
# return_tensors="pt",
|
| 59 |
+
# padding=True
|
| 60 |
+
# )
|
| 61 |
+
|
| 62 |
+
# with torch.no_grad():
|
| 63 |
+
# object_outputs = self.clip_model(**object_inputs)
|
| 64 |
+
# object_logits = object_outputs.logits_per_image
|
| 65 |
+
# object_probs = object_logits.softmax(dim=1)
|
| 66 |
+
|
| 67 |
+
# # Get top objects
|
| 68 |
+
# top_object_indices = torch.topk(object_probs, 5, dim=1).indices[0]
|
| 69 |
+
# detected_objects = []
|
| 70 |
+
# for idx in top_object_indices:
|
| 71 |
+
# obj_name = self.common_objects[idx]
|
| 72 |
+
# confidence = object_probs[0][idx].item()
|
| 73 |
+
# if confidence > 0.1: # Confidence threshold
|
| 74 |
+
# detected_objects.append({
|
| 75 |
+
# 'name': obj_name,
|
| 76 |
+
# 'confidence': confidence
|
| 77 |
+
# })
|
| 78 |
+
|
| 79 |
+
# # Analyze scene type
|
| 80 |
+
# scene_inputs = self.clip_processor(
|
| 81 |
+
# text=self.scene_categories,
|
| 82 |
+
# images=image_rgb,
|
| 83 |
+
# return_tensors="pt",
|
| 84 |
+
# padding=True
|
| 85 |
+
# )
|
| 86 |
+
|
| 87 |
+
# with torch.no_grad():
|
| 88 |
+
# scene_outputs = self.clip_model(**scene_inputs)
|
| 89 |
+
# scene_logits = scene_outputs.logits_per_image
|
| 90 |
+
# scene_probs = scene_logits.softmax(dim=1)
|
| 91 |
+
|
| 92 |
+
# top_scene_indices = torch.topk(scene_probs, 3, dim=1).indices[0]
|
| 93 |
+
# scene_types = []
|
| 94 |
+
# for idx in top_scene_indices:
|
| 95 |
+
# scene_name = self.scene_categories[idx]
|
| 96 |
+
# confidence = scene_probs[0][idx].item()
|
| 97 |
+
# scene_types.append({
|
| 98 |
+
# 'type': scene_name,
|
| 99 |
+
# 'confidence': confidence
|
| 100 |
+
# })
|
| 101 |
+
|
| 102 |
+
# return {
|
| 103 |
+
# 'objects': detected_objects,
|
| 104 |
+
# 'scenes': scene_types,
|
| 105 |
+
# 'success': True
|
| 106 |
+
# }
|
| 107 |
+
|
| 108 |
+
# except Exception as e:
|
| 109 |
+
# print(f"CLIP analysis failed: {e}")
|
| 110 |
+
# return self.fallback_image_analysis(image)
|
| 111 |
+
import torch
|
| 112 |
+
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, AutoModelForCausalLM
|
| 113 |
+
from huggingface_hub import login
|
| 114 |
+
from PIL import Image
|
| 115 |
+
import gradio as gr
|
| 116 |
+
|
| 117 |
class ImageStoryteller:
|
| 118 |
+
def __init__(self, llm_model_id="microsoft/phi-2"):
|
| 119 |
+
print("Initializing Image Storyteller with CLIP-ViT and LLM...")
|
| 120 |
|
| 121 |
# Load CLIP model for image understanding
|
| 122 |
try:
|
|
|
|
| 128 |
self.clip_model = None
|
| 129 |
self.clip_processor = None
|
| 130 |
|
| 131 |
+
# Load LLM for story generation
|
| 132 |
+
try:
|
| 133 |
+
# For Gemma, you need to login first (uncomment if using Gemma)
|
| 134 |
+
# login() # Only for Gemma models
|
| 135 |
+
|
| 136 |
+
# Choose your LLM (phi-2 doesn't require login)
|
| 137 |
+
self.llm_model_id = llm_model_id
|
| 138 |
+
self.tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
| 139 |
+
self.llm_model = AutoModelForCausalLM.from_pretrained(
|
| 140 |
+
llm_model_id,
|
| 141 |
+
torch_dtype=torch.float16,
|
| 142 |
+
device_map="auto",
|
| 143 |
+
trust_remote_code=True if "phi" in llm_model_id else False
|
| 144 |
+
)
|
| 145 |
+
print(f"LLM model {llm_model_id} loaded successfully!")
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"LLM loading failed: {e}")
|
| 148 |
+
self.llm_model = None
|
| 149 |
+
self.tokenizer = None
|
| 150 |
+
|
| 151 |
# Common objects for scene understanding
|
| 152 |
self.common_objects = [
|
| 153 |
'person', 'people', 'human', 'man', 'woman', 'child', 'baby',
|
|
|
|
| 236 |
return self.fallback_image_analysis(image)
|
| 237 |
|
| 238 |
def fallback_image_analysis(self, image):
|
| 239 |
+
"""Fallback analysis when CLIP fails"""
|
| 240 |
+
return {
|
| 241 |
+
'objects': [{'name': 'scene', 'confidence': 1.0}],
|
| 242 |
+
'scenes': [{'type': 'general image', 'confidence': 1.0}],
|
| 243 |
+
'success': False
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
def generate_story_from_analysis(self, analysis_result, creativity_level=0.7):
|
| 247 |
+
"""Generate a story based on detected objects and scene"""
|
| 248 |
+
if self.llm_model is None:
|
| 249 |
+
return "Story generation model not available."
|
| 250 |
|
| 251 |
+
try:
|
| 252 |
+
# Extract detected objects and scene
|
| 253 |
+
objects = [obj['name'] for obj in analysis_result['objects']]
|
| 254 |
+
scenes = [scene['type'] for scene in analysis_result['scenes']]
|
| 255 |
+
|
| 256 |
+
# Create a prompt for the LLM
|
| 257 |
+
objects_str = ", ".join(objects[:3]) # Use top 3 objects
|
| 258 |
+
scene_str = scenes[0] if scenes else "general scene"
|
| 259 |
+
|
| 260 |
+
# Different prompt templates for creativity
|
| 261 |
+
if creativity_level > 0.8:
|
| 262 |
+
prompt = f"""Based on this image containing {objects_str} in a {scene_str}, write a creative and imaginative short story (3-4 paragraphs).
|
| 263 |
+
Make it engaging and add interesting details about the scene."""
|
| 264 |
+
elif creativity_level > 0.5:
|
| 265 |
+
prompt = f"""Create a short story about an image with {objects_str} in a {scene_str}.
|
| 266 |
+
Write 2-3 paragraphs that describe what might be happening in this scene."""
|
| 267 |
+
else:
|
| 268 |
+
prompt = f"""Describe what you see in an image containing {objects_str} in a {scene_str}.
|
| 269 |
+
Write a simple 1-2 paragraph description."""
|
| 270 |
+
|
| 271 |
+
# Format for the specific LLM
|
| 272 |
+
if "phi" in self.llm_model_id:
|
| 273 |
+
# Phi-2 specific formatting
|
| 274 |
+
formatted_prompt = f"Instruct: {prompt}\nOutput:"
|
| 275 |
+
elif "gemma" in self.llm_model_id:
|
| 276 |
+
# Gemma specific formatting
|
| 277 |
+
formatted_prompt = f"<start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
|
| 278 |
+
else:
|
| 279 |
+
# Generic formatting
|
| 280 |
+
formatted_prompt = f"Write a story: {prompt}\n\nStory:"
|
| 281 |
+
|
| 282 |
+
# Tokenize and generate
|
| 283 |
+
inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.llm_model.device)
|
| 284 |
+
|
| 285 |
+
with torch.no_grad():
|
| 286 |
+
outputs = self.llm_model.generate(
|
| 287 |
+
**inputs,
|
| 288 |
+
max_new_tokens=250, # Shorter for faster generation
|
| 289 |
+
temperature=creativity_level,
|
| 290 |
+
do_sample=True,
|
| 291 |
+
top_p=0.9,
|
| 292 |
+
repetition_penalty=1.1,
|
| 293 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Decode and clean up
|
| 297 |
+
story = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 298 |
+
|
| 299 |
+
# Remove the prompt from the beginning if present
|
| 300 |
+
if story.startswith(formatted_prompt):
|
| 301 |
+
story = story[len(formatted_prompt):].strip()
|
| 302 |
+
|
| 303 |
+
return story
|
| 304 |
+
|
| 305 |
+
except Exception as e:
|
| 306 |
+
print(f"Story generation failed: {e}")
|
| 307 |
+
return f"Failed to generate story. Detected objects: {objects_str} in a {scene_str}."
|
| 308 |
+
|
| 309 |
+
def process_image_and_generate_story(self, image, creativity_level=0.7):
|
| 310 |
+
"""Complete pipeline: analyze image and generate story"""
|
| 311 |
+
print("Analyzing image...")
|
| 312 |
+
analysis = self.analyze_image_with_clip(image)
|
| 313 |
+
|
| 314 |
+
print("Generating story...")
|
| 315 |
+
story = self.generate_story_from_analysis(analysis, creativity_level)
|
| 316 |
+
|
| 317 |
+
# Return both analysis and story
|
| 318 |
+
detected_objects = [obj['name'] for obj in analysis['objects']]
|
| 319 |
+
scene_type = analysis['scenes'][0]['type'] if analysis['scenes'] else "unknown"
|
| 320 |
|
| 321 |
return {
|
| 322 |
+
'detected_objects': detected_objects,
|
| 323 |
+
'scene_type': scene_type,
|
| 324 |
+
'story': story,
|
| 325 |
+
'analysis_success': analysis['success']
|
| 326 |
}
|
| 327 |
+
|
| 328 |
+
# def fallback_image_analysis(self, image):
|
| 329 |
+
# """Fallback image analysis when CLIP fails"""
|
| 330 |
+
# img_np = np.array(image)
|
| 331 |
+
# height, width = img_np.shape[:2]
|
| 332 |
+
|
| 333 |
+
# # Simple color-based analysis
|
| 334 |
+
# hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
|
| 335 |
+
|
| 336 |
+
# objects = []
|
| 337 |
+
# scenes = []
|
| 338 |
+
|
| 339 |
+
# # Detect blue areas (sky/water)
|
| 340 |
+
# blue_mask = cv2.inRange(hsv, (100, 50, 50), (130, 255, 255))
|
| 341 |
+
# if np.sum(blue_mask) > height * width * 0.1:
|
| 342 |
+
# objects.append({'name': 'sky', 'confidence': 0.6})
|
| 343 |
+
# scenes.append({'type': 'outdoor scene', 'confidence': 0.7})
|
| 344 |
+
|
| 345 |
+
# # Detect green areas (nature)
|
| 346 |
+
# green_mask = cv2.inRange(hsv, (35, 50, 50), (85, 255, 255))
|
| 347 |
+
# if np.sum(green_mask) > height * width * 0.1:
|
| 348 |
+
# objects.append({'name': 'nature', 'confidence': 0.6})
|
| 349 |
+
# scenes.append({'type': 'nature', 'confidence': 0.7})
|
| 350 |
+
|
| 351 |
+
# # Detect skin tones (people)
|
| 352 |
+
# skin_mask = cv2.inRange(hsv, (0, 30, 60), (20, 150, 255))
|
| 353 |
+
# if np.sum(skin_mask) > 1000:
|
| 354 |
+
# objects.append({'name': 'person', 'confidence': 0.5})
|
| 355 |
+
# scenes.append({'type': 'portrait', 'confidence': 0.6})
|
| 356 |
+
|
| 357 |
+
# # Detect edges (buildings/structures)
|
| 358 |
+
# gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 359 |
+
# edges = cv2.Canny(gray, 50, 150)
|
| 360 |
+
# if np.sum(edges) > height * width * 0.05:
|
| 361 |
+
# objects.append({'name': 'building', 'confidence': 0.5})
|
| 362 |
+
# scenes.append({'type': 'urban', 'confidence': 0.6})
|
| 363 |
+
|
| 364 |
+
# return {
|
| 365 |
+
# 'objects': objects,
|
| 366 |
+
# 'scenes': scenes,
|
| 367 |
+
# 'success': False
|
| 368 |
+
# }
|
| 369 |
|
| 370 |
def create_analysis_overlay(self, image, analysis_result):
|
| 371 |
"""Create analysis overlay in bottom left with white text on black background"""
|
|
|
|
| 417 |
|
| 418 |
return Image.fromarray(overlay)
|
| 419 |
|
| 420 |
+
# def generate_story(self, analysis_result, image_size):
|
| 421 |
+
# """Generate story based on CLIP analysis"""
|
| 422 |
+
# # Prepare context from analysis
|
| 423 |
+
# objects_text = ", ".join([obj['name'] for obj in analysis_result['objects'][:5]])
|
| 424 |
+
# scenes_text = analysis_result['scenes'][0]['type'] if analysis_result['scenes'] else "unknown scene"
|
| 425 |
|
| 426 |
+
# width, height = image_size
|
| 427 |
|
| 428 |
+
# # Create story based on analysis
|
| 429 |
+
# if 'person' in objects_text.lower():
|
| 430 |
+
# story = f"In this captivating {width}x{height} {scenes_text}, we see {objects_text}. A story unfolds where human presence meets the environment, creating moments of connection and experience that speak to the heart of what it means to be alive in this visual narrative."
|
| 431 |
|
| 432 |
+
# elif 'nature' in objects_text.lower():
|
| 433 |
+
# story = f"This breathtaking {width}x{height} {scenes_text} reveals {objects_text}. Nature's timeless beauty tells a story of growth, change, and the enduring power of the natural world, where every element harmonizes to create a symphony of visual poetry."
|
| 434 |
|
| 435 |
+
# elif 'building' in objects_text.lower() or 'urban' in scenes_text.lower():
|
| 436 |
+
# story = f"Architectural elegance defines this {width}x{height} {scenes_text} featuring {objects_text}. The structures stand as silent witnesses to countless stories, their forms telling tales of human ingenuity, community, and the relentless march of progress through time."
|
| 437 |
|
| 438 |
+
# else:
|
| 439 |
+
# story = f"In this compelling {width}x{height} composition showing {objects_text}, visual elements converge to create a unique narrative. The {scenes_text} invites contemplation, asking viewers to explore the relationships between forms, colors, and spaces that together tell a story beyond words."
|
| 440 |
|
| 441 |
+
# return story
|
| 442 |
|
| 443 |
# def create_story_overlay(self, image, story):
|
| 444 |
# """Create story overlay in bottom left with white text on black background"""
|
|
|
|
| 651 |
return None
|
| 652 |
|
| 653 |
# Create Gradio interface
|
| 654 |
+
with gr.Blocks(title="Who says AI isn’t creative? Watch it turn a single image into a beautifully written story", theme=gr.themes.Soft()) as demo:
|
| 655 |
+
gr.Markdown("# Image Story Teller")
|
| 656 |
+
gr.Markdown("**Upload an image to analyse content and generate stories**")
|
| 657 |
|
| 658 |
# Load example images
|
| 659 |
example_images_list = get_example_images()
|