Update app.py
Browse files
app.py
CHANGED
|
@@ -6,30 +6,32 @@ import torch
|
|
| 6 |
from transformers import pipeline
|
| 7 |
import requests
|
| 8 |
from io import BytesIO
|
|
|
|
|
|
|
| 9 |
|
| 10 |
class ImageStoryteller:
|
| 11 |
def __init__(self):
|
| 12 |
-
print("Initializing Image Storyteller...")
|
| 13 |
|
| 14 |
-
# Load
|
| 15 |
try:
|
| 16 |
-
self.yolo_model =
|
| 17 |
-
print("
|
| 18 |
except Exception as e:
|
| 19 |
-
print(f"
|
| 20 |
self.yolo_model = None
|
| 21 |
|
| 22 |
# Initialize text generation pipelines
|
| 23 |
try:
|
| 24 |
-
# For narrative generation
|
| 25 |
self.story_pipeline = pipeline(
|
| 26 |
"text-generation",
|
| 27 |
-
model="
|
| 28 |
-
torch_dtype=torch.
|
| 29 |
)
|
| 30 |
print("Story pipeline initialized!")
|
| 31 |
-
except:
|
| 32 |
-
print("
|
| 33 |
self.story_pipeline = None
|
| 34 |
|
| 35 |
# Common objects for fallback detection
|
|
@@ -49,35 +51,150 @@ class ImageStoryteller:
|
|
| 49 |
]
|
| 50 |
|
| 51 |
def detect_objects(self, image):
|
| 52 |
-
"""Detect objects in the image using
|
| 53 |
if self.yolo_model is not None:
|
| 54 |
try:
|
| 55 |
-
# Convert PIL to numpy for
|
| 56 |
img_np = np.array(image)
|
| 57 |
|
| 58 |
-
# Run
|
| 59 |
results = self.yolo_model(img_np)
|
| 60 |
-
detections = results.pandas().xyxy[0]
|
| 61 |
|
| 62 |
-
# Extract detected objects with confidence > 0.5
|
| 63 |
objects = []
|
| 64 |
-
for
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
return objects
|
| 74 |
|
| 75 |
except Exception as e:
|
| 76 |
-
print(f"
|
| 77 |
|
| 78 |
# Fallback: Simple color-based object detection
|
| 79 |
return self.fallback_object_detection(image)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
def fallback_object_detection(self, image):
|
| 82 |
"""Simple fallback object detection based on color and composition"""
|
| 83 |
img_np = np.array(image)
|
|
@@ -111,8 +228,8 @@ class ImageStoryteller:
|
|
| 111 |
|
| 112 |
return objects
|
| 113 |
|
| 114 |
-
def generate_narrative(self, objects, image_size):
|
| 115 |
-
"""Generate a narrative story based on detected objects"""
|
| 116 |
if not objects:
|
| 117 |
return "In this serene scene, the world holds its breath in quiet contemplation. " \
|
| 118 |
"Though specific elements remain mysterious, the composition speaks of " \
|
|
@@ -122,36 +239,51 @@ class ImageStoryteller:
|
|
| 122 |
object_names = [obj['name'] for obj in objects]
|
| 123 |
unique_objects = list(set(object_names))
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# Create prompt for story generation
|
| 126 |
-
prompt = f"In an image containing {', '.join(unique_objects)}, "
|
| 127 |
|
| 128 |
if self.story_pipeline is not None:
|
| 129 |
try:
|
| 130 |
story = self.story_pipeline(
|
| 131 |
prompt + "tell a beautiful narrative story about this scene:",
|
| 132 |
-
max_length=
|
| 133 |
num_return_sequences=1,
|
| 134 |
temperature=0.8,
|
| 135 |
-
do_sample=True
|
|
|
|
| 136 |
)[0]['generated_text']
|
| 137 |
return story
|
| 138 |
-
except:
|
| 139 |
-
|
| 140 |
|
| 141 |
# Fallback narrative generation
|
| 142 |
-
return self.fallback_narrative(unique_objects, image_size)
|
| 143 |
|
| 144 |
-
def fallback_narrative(self, objects, image_size):
|
| 145 |
"""Fallback method for generating narratives"""
|
| 146 |
width, height = image_size
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
if 'person' in objects:
|
| 149 |
if 'nature' in objects or 'sky' in objects:
|
| 150 |
-
return f"In this {width}x{height} frame, a solitary figure stands amidst nature's embrace. " \
|
| 151 |
"The person seems lost in thought, surrounded by the gentle whispers of the environment. " \
|
| 152 |
"Each element in the scene tells a story of connection between humanity and the natural world."
|
| 153 |
else:
|
| 154 |
-
return f"Within this {width}x{height} composition, a human presence captures our attention. " \
|
| 155 |
"Their story unfolds silently, inviting us to imagine their journey, their dreams, " \
|
| 156 |
"and the moments that led them to this precise point in time."
|
| 157 |
|
|
@@ -182,7 +314,8 @@ class ImageStoryteller:
|
|
| 182 |
max_length=200,
|
| 183 |
num_return_sequences=1,
|
| 184 |
temperature=0.9,
|
| 185 |
-
do_sample=True
|
|
|
|
| 186 |
)[0]['generated_text']
|
| 187 |
|
| 188 |
# Extract just the poetic lines
|
|
@@ -190,8 +323,8 @@ class ImageStoryteller:
|
|
| 190 |
poetic_lines = [line for line in lines if line.strip() and len(line.strip()) > 10]
|
| 191 |
if len(poetic_lines) >= 4:
|
| 192 |
return '\n'.join(poetic_lines[:6])
|
| 193 |
-
except:
|
| 194 |
-
|
| 195 |
|
| 196 |
# Fallback poetry generation
|
| 197 |
return self.fallback_poetry(narrative)
|
|
@@ -224,41 +357,70 @@ class ImageStoryteller:
|
|
| 224 |
# Detect objects
|
| 225 |
objects = self.detect_objects(image)
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
# Generate narrative
|
| 228 |
-
narrative = self.generate_narrative(objects, image.size)
|
| 229 |
|
| 230 |
# Generate poetry
|
| 231 |
poetry = self.generate_poetry(narrative)
|
| 232 |
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
except Exception as e:
|
| 236 |
error_msg = f"An error occurred while processing the image: {str(e)}"
|
| 237 |
-
return error_msg, "Unable to generate poetry due to processing error."
|
| 238 |
|
| 239 |
# Initialize the storyteller
|
| 240 |
storyteller = ImageStoryteller()
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
# Create Gradio interface
|
| 243 |
-
with gr.Blocks(title="AI Image Storyteller", theme="soft") as demo:
|
| 244 |
-
gr.Markdown("# π AI Image Storyteller")
|
| 245 |
-
gr.Markdown("**Upload any image and watch AI
|
| 246 |
|
| 247 |
with gr.Row():
|
| 248 |
with gr.Column():
|
| 249 |
input_image = gr.Image(
|
| 250 |
type="pil",
|
| 251 |
label="πΌοΈ Upload Your Image",
|
| 252 |
-
height=
|
| 253 |
)
|
| 254 |
-
process_btn = gr.Button("β¨
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
with gr.Column():
|
| 257 |
with gr.Tab("π Narrative Story"):
|
| 258 |
narrative_output = gr.Textbox(
|
| 259 |
label="Image Narrative",
|
| 260 |
-
lines=
|
| 261 |
-
max_lines=
|
| 262 |
placeholder="Your image's story will appear here...",
|
| 263 |
show_copy_button=True
|
| 264 |
)
|
|
@@ -266,24 +428,20 @@ with gr.Blocks(title="AI Image Storyteller", theme="soft") as demo:
|
|
| 266 |
with gr.Tab("π Poetic Verses"):
|
| 267 |
poetry_output = gr.Textbox(
|
| 268 |
label="6-Line Poetry",
|
| 269 |
-
lines=
|
| 270 |
-
max_lines=
|
| 271 |
placeholder="Poetic interpretation will appear here...",
|
| 272 |
show_copy_button=True
|
| 273 |
)
|
| 274 |
|
| 275 |
-
# Examples section
|
| 276 |
gr.Markdown("### π― Try These Examples")
|
| 277 |
gr.Examples(
|
| 278 |
-
examples=
|
| 279 |
-
["https://images.unsplash.com/photo-1506905925346-21bda4d32df4?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1000&q=80"],
|
| 280 |
-
["https://images.unsplash.com/photo-1518837695005-2083093ee35b?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1000&q=80"],
|
| 281 |
-
["https://images.unsplash.com/photo-1469474968028-56623f02e42e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1000&q=80"]
|
| 282 |
-
],
|
| 283 |
inputs=input_image,
|
| 284 |
-
outputs=[narrative_output, poetry_output],
|
| 285 |
fn=storyteller.process_image,
|
| 286 |
-
cache_examples=
|
| 287 |
)
|
| 288 |
|
| 289 |
# How it works section
|
|
@@ -291,16 +449,24 @@ with gr.Blocks(title="AI Image Storyteller", theme="soft") as demo:
|
|
| 291 |
gr.Markdown("""
|
| 292 |
**The Magic Behind the Stories:**
|
| 293 |
|
| 294 |
-
1. **Object Detection**:
|
| 295 |
-
2. **
|
| 296 |
-
3. **
|
| 297 |
-
4. **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
**Perfect for:**
|
| 300 |
- Personal photos
|
| 301 |
- Landscape images
|
| 302 |
- Urban scenes
|
| 303 |
-
-
|
| 304 |
- Travel memories
|
| 305 |
""")
|
| 306 |
|
|
@@ -308,7 +474,7 @@ with gr.Blocks(title="AI Image Storyteller", theme="soft") as demo:
|
|
| 308 |
process_btn.click(
|
| 309 |
fn=storyteller.process_image,
|
| 310 |
inputs=input_image,
|
| 311 |
-
outputs=[narrative_output, poetry_output]
|
| 312 |
)
|
| 313 |
|
| 314 |
# Launch the application
|
|
|
|
| 6 |
from transformers import pipeline
|
| 7 |
import requests
|
| 8 |
from io import BytesIO
|
| 9 |
+
import os
|
| 10 |
+
from ultralytics import YOLO
|
| 11 |
|
| 12 |
class ImageStoryteller:
|
| 13 |
def __init__(self):
|
| 14 |
+
print("Initializing Image Storyteller with YOLOv8...")
|
| 15 |
|
| 16 |
+
# Load YOLOv8 model for object detection
|
| 17 |
try:
|
| 18 |
+
self.yolo_model = YOLO('yolov8n.pt') # Using nano version for faster inference
|
| 19 |
+
print("YOLOv8 model loaded successfully!")
|
| 20 |
except Exception as e:
|
| 21 |
+
print(f"YOLOv8 loading failed: {e}")
|
| 22 |
self.yolo_model = None
|
| 23 |
|
| 24 |
# Initialize text generation pipelines
|
| 25 |
try:
|
| 26 |
+
# For narrative generation - using a smaller model for Hugging Face Spaces
|
| 27 |
self.story_pipeline = pipeline(
|
| 28 |
"text-generation",
|
| 29 |
+
model="distilgpt2", # Lighter model for Spaces
|
| 30 |
+
torch_dtype=torch.float32
|
| 31 |
)
|
| 32 |
print("Story pipeline initialized!")
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(f"Story pipeline failed: {e}")
|
| 35 |
self.story_pipeline = None
|
| 36 |
|
| 37 |
# Common objects for fallback detection
|
|
|
|
| 51 |
]
|
| 52 |
|
| 53 |
def detect_objects(self, image):
|
| 54 |
+
"""Detect objects in the image using YOLOv8"""
|
| 55 |
if self.yolo_model is not None:
|
| 56 |
try:
|
| 57 |
+
# Convert PIL to numpy for YOLOv8
|
| 58 |
img_np = np.array(image)
|
| 59 |
|
| 60 |
+
# Run YOLOv8 detection
|
| 61 |
results = self.yolo_model(img_np)
|
|
|
|
| 62 |
|
|
|
|
| 63 |
objects = []
|
| 64 |
+
for result in results:
|
| 65 |
+
boxes = result.boxes
|
| 66 |
+
if boxes is not None:
|
| 67 |
+
for box in boxes:
|
| 68 |
+
confidence = box.conf.item()
|
| 69 |
+
if confidence > 0.5: # Confidence threshold
|
| 70 |
+
class_id = int(box.cls.item())
|
| 71 |
+
class_name = self.yolo_model.names[class_id]
|
| 72 |
+
bbox = box.xyxy[0].tolist()
|
| 73 |
+
|
| 74 |
+
objects.append({
|
| 75 |
+
'name': class_name,
|
| 76 |
+
'confidence': confidence,
|
| 77 |
+
'bbox': bbox
|
| 78 |
+
})
|
| 79 |
|
| 80 |
return objects
|
| 81 |
|
| 82 |
except Exception as e:
|
| 83 |
+
print(f"YOLOv8 detection failed: {e}")
|
| 84 |
|
| 85 |
# Fallback: Simple color-based object detection
|
| 86 |
return self.fallback_object_detection(image)
|
| 87 |
|
| 88 |
+
def draw_detections(self, image, objects):
|
| 89 |
+
"""Draw bounding boxes and labels on the image"""
|
| 90 |
+
img_np = np.array(image)
|
| 91 |
+
img_with_boxes = img_np.copy()
|
| 92 |
+
|
| 93 |
+
# Colors for different object types
|
| 94 |
+
colors = {
|
| 95 |
+
'person': (0, 255, 0), # Green
|
| 96 |
+
'vehicle': (255, 0, 0), # Blue (cars, bikes, etc.)
|
| 97 |
+
'animal': (0, 165, 255), # Orange
|
| 98 |
+
'default': (255, 255, 0) # Yellow
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
for obj in objects:
|
| 102 |
+
bbox = obj['bbox']
|
| 103 |
+
name = obj['name']
|
| 104 |
+
confidence = obj['confidence']
|
| 105 |
+
|
| 106 |
+
# Determine color based on object type
|
| 107 |
+
if 'person' in name:
|
| 108 |
+
color = colors['person']
|
| 109 |
+
elif any(vehicle in name for vehicle in ['car', 'bicycle', 'motorcycle', 'bus', 'truck']):
|
| 110 |
+
color = colors['vehicle']
|
| 111 |
+
elif any(animal in name for animal in ['bird', 'cat', 'dog', 'horse', 'sheep', 'cow']):
|
| 112 |
+
color = colors['animal']
|
| 113 |
+
else:
|
| 114 |
+
color = colors['default']
|
| 115 |
+
|
| 116 |
+
# Convert coordinates to integers
|
| 117 |
+
x1, y1, x2, y2 = map(int, bbox)
|
| 118 |
+
|
| 119 |
+
# Draw bounding box
|
| 120 |
+
cv2.rectangle(img_with_boxes, (x1, y1), (x2, y2), color, 2)
|
| 121 |
+
|
| 122 |
+
# Draw label background
|
| 123 |
+
label = f"{name} {confidence:.2f}"
|
| 124 |
+
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)[0]
|
| 125 |
+
cv2.rectangle(img_with_boxes, (x1, y1 - label_size[1] - 10),
|
| 126 |
+
(x1 + label_size[0], y1), color, -1)
|
| 127 |
+
|
| 128 |
+
# Draw label text
|
| 129 |
+
cv2.putText(img_with_boxes, label, (x1, y1 - 5),
|
| 130 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
|
| 131 |
+
|
| 132 |
+
return Image.fromarray(img_with_boxes)
|
| 133 |
+
|
| 134 |
+
def detect_facial_expressions(self, image, objects):
|
| 135 |
+
"""Simple facial expression detection based on face analysis"""
|
| 136 |
+
img_np = np.array(image)
|
| 137 |
+
expressions = []
|
| 138 |
+
|
| 139 |
+
# Look for person objects
|
| 140 |
+
person_objects = [obj for obj in objects if obj['name'] == 'person']
|
| 141 |
+
|
| 142 |
+
if not person_objects:
|
| 143 |
+
return expressions
|
| 144 |
+
|
| 145 |
+
# Simple expression detection based on face position and context
|
| 146 |
+
for person in person_objects:
|
| 147 |
+
bbox = person['bbox']
|
| 148 |
+
x1, y1, x2, y2 = map(int, bbox)
|
| 149 |
+
|
| 150 |
+
# Extract face region (approximate)
|
| 151 |
+
face_height = y2 - y1
|
| 152 |
+
face_region = img_np[y1:y2, x1:x2]
|
| 153 |
+
|
| 154 |
+
if face_region.size == 0:
|
| 155 |
+
continue
|
| 156 |
+
|
| 157 |
+
# Simple expression estimation based on face position and context
|
| 158 |
+
expression = self.estimate_expression(face_region, bbox, img_np.shape)
|
| 159 |
+
expressions.append({
|
| 160 |
+
'person_bbox': bbox,
|
| 161 |
+
'expression': expression,
|
| 162 |
+
'confidence': 0.6 # Placeholder confidence
|
| 163 |
+
})
|
| 164 |
+
|
| 165 |
+
return expressions
|
| 166 |
+
|
| 167 |
+
def estimate_expression(self, face_region, bbox, image_shape):
|
| 168 |
+
"""Estimate facial expression based on simple heuristics"""
|
| 169 |
+
try:
|
| 170 |
+
# Convert to grayscale for analysis
|
| 171 |
+
if len(face_region.shape) == 3:
|
| 172 |
+
gray_face = cv2.cvtColor(face_region, cv2.COLOR_RGB2GRAY)
|
| 173 |
+
else:
|
| 174 |
+
gray_face = face_region
|
| 175 |
+
|
| 176 |
+
# Simple brightness and contrast analysis
|
| 177 |
+
brightness = np.mean(gray_face)
|
| 178 |
+
contrast = np.std(gray_face)
|
| 179 |
+
|
| 180 |
+
# Face position in image
|
| 181 |
+
x1, y1, x2, y2 = bbox
|
| 182 |
+
img_height, img_width = image_shape[:2]
|
| 183 |
+
face_center_y = (y1 + y2) / 2
|
| 184 |
+
|
| 185 |
+
# Simple expression rules
|
| 186 |
+
if brightness > 150 and contrast < 50:
|
| 187 |
+
return "neutral"
|
| 188 |
+
elif face_center_y < img_height * 0.3: # Face in upper part
|
| 189 |
+
return "surprised"
|
| 190 |
+
elif contrast > 70:
|
| 191 |
+
return "expressive"
|
| 192 |
+
else:
|
| 193 |
+
return "calm"
|
| 194 |
+
|
| 195 |
+
except:
|
| 196 |
+
return "neutral"
|
| 197 |
+
|
| 198 |
def fallback_object_detection(self, image):
|
| 199 |
"""Simple fallback object detection based on color and composition"""
|
| 200 |
img_np = np.array(image)
|
|
|
|
| 228 |
|
| 229 |
return objects
|
| 230 |
|
| 231 |
+
def generate_narrative(self, objects, expressions, image_size):
|
| 232 |
+
"""Generate a narrative story based on detected objects and expressions"""
|
| 233 |
if not objects:
|
| 234 |
return "In this serene scene, the world holds its breath in quiet contemplation. " \
|
| 235 |
"Though specific elements remain mysterious, the composition speaks of " \
|
|
|
|
| 239 |
object_names = [obj['name'] for obj in objects]
|
| 240 |
unique_objects = list(set(object_names))
|
| 241 |
|
| 242 |
+
# Include expressions in narrative
|
| 243 |
+
expression_text = ""
|
| 244 |
+
if expressions:
|
| 245 |
+
exp_descriptions = []
|
| 246 |
+
for exp in expressions:
|
| 247 |
+
exp_descriptions.append(f"{exp['expression']} expression")
|
| 248 |
+
expression_text = f" with {', '.join(exp_descriptions)}"
|
| 249 |
+
|
| 250 |
# Create prompt for story generation
|
| 251 |
+
prompt = f"In an image containing {', '.join(unique_objects)}{expression_text}, "
|
| 252 |
|
| 253 |
if self.story_pipeline is not None:
|
| 254 |
try:
|
| 255 |
story = self.story_pipeline(
|
| 256 |
prompt + "tell a beautiful narrative story about this scene:",
|
| 257 |
+
max_length=200,
|
| 258 |
num_return_sequences=1,
|
| 259 |
temperature=0.8,
|
| 260 |
+
do_sample=True,
|
| 261 |
+
pad_token_id=50256
|
| 262 |
)[0]['generated_text']
|
| 263 |
return story
|
| 264 |
+
except Exception as e:
|
| 265 |
+
print(f"Story generation failed: {e}")
|
| 266 |
|
| 267 |
# Fallback narrative generation
|
| 268 |
+
return self.fallback_narrative(unique_objects, expressions, image_size)
|
| 269 |
|
| 270 |
+
def fallback_narrative(self, objects, expressions, image_size):
|
| 271 |
"""Fallback method for generating narratives"""
|
| 272 |
width, height = image_size
|
| 273 |
|
| 274 |
+
# Include expression information
|
| 275 |
+
expression_context = ""
|
| 276 |
+
if expressions:
|
| 277 |
+
main_expression = expressions[0]['expression']
|
| 278 |
+
expression_context = f" with a {main_expression} demeanor"
|
| 279 |
+
|
| 280 |
if 'person' in objects:
|
| 281 |
if 'nature' in objects or 'sky' in objects:
|
| 282 |
+
return f"In this {width}x{height} frame, a solitary figure stands amidst nature's embrace{expression_context}. " \
|
| 283 |
"The person seems lost in thought, surrounded by the gentle whispers of the environment. " \
|
| 284 |
"Each element in the scene tells a story of connection between humanity and the natural world."
|
| 285 |
else:
|
| 286 |
+
return f"Within this {width}x{height} composition, a human presence captures our attention{expression_context}. " \
|
| 287 |
"Their story unfolds silently, inviting us to imagine their journey, their dreams, " \
|
| 288 |
"and the moments that led them to this precise point in time."
|
| 289 |
|
|
|
|
| 314 |
max_length=200,
|
| 315 |
num_return_sequences=1,
|
| 316 |
temperature=0.9,
|
| 317 |
+
do_sample=True,
|
| 318 |
+
pad_token_id=50256
|
| 319 |
)[0]['generated_text']
|
| 320 |
|
| 321 |
# Extract just the poetic lines
|
|
|
|
| 323 |
poetic_lines = [line for line in lines if line.strip() and len(line.strip()) > 10]
|
| 324 |
if len(poetic_lines) >= 4:
|
| 325 |
return '\n'.join(poetic_lines[:6])
|
| 326 |
+
except Exception as e:
|
| 327 |
+
print(f"Poetry generation failed: {e}")
|
| 328 |
|
| 329 |
# Fallback poetry generation
|
| 330 |
return self.fallback_poetry(narrative)
|
|
|
|
| 357 |
# Detect objects
|
| 358 |
objects = self.detect_objects(image)
|
| 359 |
|
| 360 |
+
# Detect facial expressions if people are present
|
| 361 |
+
expressions = []
|
| 362 |
+
if any(obj['name'] == 'person' for obj in objects):
|
| 363 |
+
expressions = self.detect_facial_expressions(image, objects)
|
| 364 |
+
|
| 365 |
# Generate narrative
|
| 366 |
+
narrative = self.generate_narrative(objects, expressions, image.size)
|
| 367 |
|
| 368 |
# Generate poetry
|
| 369 |
poetry = self.generate_poetry(narrative)
|
| 370 |
|
| 371 |
+
# Create detection visualization
|
| 372 |
+
detection_image = self.draw_detections(image, objects)
|
| 373 |
+
|
| 374 |
+
return narrative, poetry, detection_image
|
| 375 |
|
| 376 |
except Exception as e:
|
| 377 |
error_msg = f"An error occurred while processing the image: {str(e)}"
|
| 378 |
+
return error_msg, "Unable to generate poetry due to processing error.", image
|
| 379 |
|
| 380 |
# Initialize the storyteller
|
| 381 |
storyteller = ImageStoryteller()
|
| 382 |
|
| 383 |
+
# Check for local example images
|
| 384 |
+
example_images = []
|
| 385 |
+
for i in range(1, 7):
|
| 386 |
+
filename = f"example_{i:02d}.jpg"
|
| 387 |
+
if os.path.exists(filename):
|
| 388 |
+
example_images.append([filename])
|
| 389 |
+
print(f"Found example image: {filename}")
|
| 390 |
+
|
| 391 |
+
if not example_images:
|
| 392 |
+
print("No local example images found, using placeholder")
|
| 393 |
+
# Create a placeholder if no local images
|
| 394 |
+
example_images = [[np.ones((300, 300, 3), dtype=np.uint8) * 100]]
|
| 395 |
+
|
| 396 |
# Create Gradio interface
|
| 397 |
+
with gr.Blocks(title="AI Image Storyteller Pro", theme="soft") as demo:
|
| 398 |
+
gr.Markdown("# π AI Image Storyteller Pro")
|
| 399 |
+
gr.Markdown("**Upload any image and watch AI detect objects, analyze scenes, and create beautiful stories!**")
|
| 400 |
|
| 401 |
with gr.Row():
|
| 402 |
with gr.Column():
|
| 403 |
input_image = gr.Image(
|
| 404 |
type="pil",
|
| 405 |
label="πΌοΈ Upload Your Image",
|
| 406 |
+
height=300
|
| 407 |
)
|
| 408 |
+
process_btn = gr.Button("β¨ Analyze Image & Create Story", variant="primary", size="lg")
|
| 409 |
|
| 410 |
+
with gr.Column():
|
| 411 |
+
detection_output = gr.Image(
|
| 412 |
+
label="π Object Detection",
|
| 413 |
+
height=300,
|
| 414 |
+
show_download_button=True
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
with gr.Row():
|
| 418 |
with gr.Column():
|
| 419 |
with gr.Tab("π Narrative Story"):
|
| 420 |
narrative_output = gr.Textbox(
|
| 421 |
label="Image Narrative",
|
| 422 |
+
lines=5,
|
| 423 |
+
max_lines=8,
|
| 424 |
placeholder="Your image's story will appear here...",
|
| 425 |
show_copy_button=True
|
| 426 |
)
|
|
|
|
| 428 |
with gr.Tab("π Poetic Verses"):
|
| 429 |
poetry_output = gr.Textbox(
|
| 430 |
label="6-Line Poetry",
|
| 431 |
+
lines=6,
|
| 432 |
+
max_lines=7,
|
| 433 |
placeholder="Poetic interpretation will appear here...",
|
| 434 |
show_copy_button=True
|
| 435 |
)
|
| 436 |
|
| 437 |
+
# Examples section with local images
|
| 438 |
gr.Markdown("### π― Try These Examples")
|
| 439 |
gr.Examples(
|
| 440 |
+
examples=example_images,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
inputs=input_image,
|
| 442 |
+
outputs=[narrative_output, poetry_output, detection_output],
|
| 443 |
fn=storyteller.process_image,
|
| 444 |
+
cache_examples=True
|
| 445 |
)
|
| 446 |
|
| 447 |
# How it works section
|
|
|
|
| 449 |
gr.Markdown("""
|
| 450 |
**The Magic Behind the Stories:**
|
| 451 |
|
| 452 |
+
1. **Object Detection**: YOLOv8 AI model identifies objects in your image with bounding boxes
|
| 453 |
+
2. **Facial Analysis**: Simple expression detection for human faces
|
| 454 |
+
3. **Scene Analysis**: The system analyzes the composition and relationships between objects
|
| 455 |
+
4. **Narrative Generation**: AI creates a compelling story based on the detected elements
|
| 456 |
+
5. **Poetry Creation**: Transformers model converts the narrative into beautiful 6-line verses
|
| 457 |
+
|
| 458 |
+
**Features:**
|
| 459 |
+
- Real-time object detection with YOLOv8
|
| 460 |
+
- Visual bounding box display
|
| 461 |
+
- Facial expression estimation
|
| 462 |
+
- Context-aware storytelling
|
| 463 |
+
- Beautiful poetic interpretations
|
| 464 |
|
| 465 |
**Perfect for:**
|
| 466 |
- Personal photos
|
| 467 |
- Landscape images
|
| 468 |
- Urban scenes
|
| 469 |
+
- Group photos
|
| 470 |
- Travel memories
|
| 471 |
""")
|
| 472 |
|
|
|
|
| 474 |
process_btn.click(
|
| 475 |
fn=storyteller.process_image,
|
| 476 |
inputs=input_image,
|
| 477 |
+
outputs=[narrative_output, poetry_output, detection_output]
|
| 478 |
)
|
| 479 |
|
| 480 |
# Launch the application
|