Spaces:
Sleeping
Sleeping
| import google.generativeai as genai | |
| import asyncio | |
| from typing import AsyncGenerator | |
| async def run_model_stream(api_key: str, model: str, prompt: str): | |
| """ | |
| Run the Gemini model with streaming response. | |
| Args: | |
| api_key: The API key to use for this request | |
| model: The model name to use | |
| prompt: The user's input prompt | |
| Yields: | |
| str: Chunks of the generated response | |
| """ | |
| try: | |
| # Configure the Gemini API | |
| genai.configure(api_key=api_key) | |
| # Initialize the model with name from MODELS.csv | |
| model_instance = genai.GenerativeModel(model) | |
| # Start the streaming response using async executor | |
| response = await asyncio.get_event_loop().run_in_executor( | |
| None, | |
| lambda: model_instance.generate_content( | |
| prompt, | |
| stream=True | |
| ) | |
| ) | |
| # Process chunks with async handling | |
| for chunk in response: | |
| if chunk.text: | |
| # Use asyncio.sleep to prevent blocking | |
| await asyncio.sleep(0) | |
| yield chunk.text | |
| except Exception as e: | |
| raise Exception(f"Error with Gemini API: {str(e)}") | |
| async def run_model(api_key: str, model: str, prompt: str) -> str: | |
| """ | |
| Run the Gemini model with the provided API key and prompt (non-streaming). | |
| Args: | |
| api_key: The API key to use for this request | |
| model: The model name to use | |
| prompt: The user's input prompt | |
| Returns: | |
| str: The generated response | |
| """ | |
| response = "" | |
| async for chunk in run_model_stream(api_key, model, prompt): | |
| response += chunk | |
| return response | |