Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import re | |
| import statistics | |
| import gradio as gr | |
| import pandas as pd | |
| from langchain.document_loaders import OnlinePDFLoader | |
| from langchain.text_splitter import ( | |
| CharacterTextSplitter, | |
| RecursiveCharacterTextSplitter, | |
| ) | |
| from tqdm import tqdm | |
| from tempfile import NamedTemporaryFile | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| os.environ["OPENAI_API_KEY"] = "sk-" | |
| def pdf_parser(uploaded_file): | |
| ''' | |
| bytes_data = uploaded_file.read() | |
| with NamedTemporaryFile(delete=False) as tmp: # open a named temporary file | |
| tmp.write(bytes_data) # Write data from the uploaded file into it | |
| pdf_loader = PyPDFLoader(tmp.name) # <---- now it works! | |
| ''' | |
| #pdf_loader = PyPDFLoader(file_path) only for file path offline | |
| pdf_loader=OnlinePDFLoader(uploaded_file.name) #https://huggingface.co/spaces/fffiloni/langchain-chat-with-pdf/blob/main/app.py | |
| documents = pdf_loader.load() | |
| documents_text = [d.page_content for d in documents] | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| # Set a really small chunk size, just to show. | |
| chunk_size=600, | |
| chunk_overlap=200, | |
| length_function=len, | |
| is_separator_regex=False, | |
| ) | |
| # Split the text into chunks | |
| texts = text_splitter.create_documents(documents_text) | |
| #os.remove(tmp.name) # remove temp file | |
| return texts | |
| def qa_generator(texts): | |
| question_tokenizer = AutoTokenizer.from_pretrained( | |
| "potsawee/t5-large-generation-squad-QuestionAnswer" | |
| ) | |
| question_model = AutoModelForSeq2SeqLM.from_pretrained( | |
| "potsawee/t5-large-generation-squad-QuestionAnswer" | |
| ) | |
| question_answer_dic = {} | |
| for i in tqdm(texts): | |
| context = i.page_content | |
| try: | |
| inputs = question_tokenizer(context, return_tensors="pt") | |
| outputs = question_model.generate(**inputs, max_length=100) | |
| question_answer = question_tokenizer.decode( | |
| outputs[0], skip_special_tokens=False | |
| ) | |
| question_answer = question_answer.replace( | |
| question_tokenizer.pad_token, "" | |
| ).replace(question_tokenizer.eos_token, "") | |
| question, answer = question_answer.split(question_tokenizer.sep_token) | |
| question_answer_dic[question] = answer | |
| except: | |
| print(i) | |
| qa_notes_df = pd.DataFrame(data=[], columns=["No", "Question", "Answer"]) | |
| qa_notes_df["No"] = [i + 1 for i in range(0, len(question_answer_dic))] | |
| qa_notes_df["Question"] = [k for k in question_answer_dic.keys()] | |
| qa_notes_df["Answer"] = [a for a in question_answer_dic.values()] | |
| qa_notes_json = qa_notes_df.to_dict("records") | |
| return qa_notes_json | |