File size: 23,186 Bytes
6a46881 349ab59 6a46881 51b5ef5 6a46881 98bad2f 6a46881 fd8a707 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 fd8a707 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 fd8a707 6a46881 fd8a707 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 fd8a707 6a46881 98bad2f 6a46881 fd8a707 6a46881 98bad2f 6a46881 fd8a707 6a46881 fd8a707 98bad2f 6a46881 98bad2f fd8a707 6a46881 fd8a707 6a46881 98bad2f 6a46881 fd8a707 6a46881 fd8a707 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 fd8a707 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 0ff34d9 98bad2f 0ff34d9 6a46881 98bad2f f0cfd61 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 98bad2f 6a46881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import gradio as gr
from gradio_leaderboard import Leaderboard
import json
import os
import time
import requests
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
import backoff
from dotenv import load_dotenv
import pandas as pd
import random
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/bot_data" # HuggingFace dataset for assistant metadata
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data" # HuggingFace dataset for leaderboard data
MAX_RETRIES = 5
LEADERBOARD_COLUMNS = [
("Assistant", "string"),
("Website", "string"),
("Total Membership Events", "number"),
]
# =============================================================================
# HUGGINGFACE API WRAPPERS WITH BACKOFF
# =============================================================================
def is_rate_limit_error(e):
"""Check if exception is a HuggingFace rate limit error (429)."""
if isinstance(e, HfHubHTTPError):
return e.response.status_code == 429
return False
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
return hf_hub_download(**kwargs)
# =============================================================================
# GITHUB USERNAME VALIDATION
# =============================================================================
def validate_github_username(identifier):
"""Verify that a GitHub identifier exists."""
try:
response = requests.get(f'https://api.github.com/users/{identifier}', timeout=10)
return (True, "Username is valid") if response.status_code == 200 else (False, "GitHub identifier not found" if response.status_code == 404 else f"Validation error: HTTP {response.status_code}")
except Exception as e:
return False, f"Validation error: {str(e)}"
# =============================================================================
# HUGGINGFACE DATASET OPERATIONS
# =============================================================================
def load_agents_from_hf():
"""Load all assistant metadata JSON files from HuggingFace dataset."""
try:
api = HfApi()
assistants = []
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
# Filter for JSON files only
json_files = [f for f in files if f.endswith('.json')]
# Download and parse each JSON file
for json_file in json_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=AGENTS_REPO,
filename=json_file,
repo_type="dataset"
)
with open(file_path, 'r') as f:
agent_data = json.load(f)
# Only process assistants with status == "active"
if agent_data.get('status') != 'active':
continue
# Extract github_identifier from filename (e.g., "assistant[bot].json" -> "assistant[bot]")
filename_identifier = json_file.replace('.json', '')
# Add or override github_identifier to match filename
agent_data['github_identifier'] = filename_identifier
assistants.append(agent_data)
except Exception as e:
print(f"Warning: Could not load {json_file}: {str(e)}")
continue
print(f"Loaded {len(assistants)} assistants from HuggingFace")
return assistants
except Exception as e:
print(f"Could not load assistants from HuggingFace: {str(e)}")
return None
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
"""
Upload file to HuggingFace with exponential backoff retry logic.
Args:
api: HfApi instance
path_or_fileobj: Local file path to upload
path_in_repo: Target path in the repository
repo_id: Repository ID
repo_type: Type of repository (e.g., "dataset")
token: HuggingFace token
max_retries: Maximum number of retry attempts
Returns:
True if upload succeeded, raises exception if all retries failed
"""
delay = 2.0 # Initial delay in seconds
for attempt in range(max_retries):
try:
api.upload_file(
path_or_fileobj=path_or_fileobj,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
token=token
)
if attempt > 0:
print(f" Upload succeeded on attempt {attempt + 1}/{max_retries}")
return True
except Exception as e:
if attempt < max_retries - 1:
wait_time = delay + random.uniform(0, 1.0)
print(f" Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
print(f" Retrying in {wait_time:.1f} seconds...")
time.sleep(wait_time)
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
else:
print(f" Upload failed after {max_retries} attempts: {str(e)}")
raise
def save_agent_to_hf(data):
"""Save a new assistant to HuggingFace dataset as {identifier}.json in root."""
try:
api = HfApi()
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
identifier = data['github_identifier']
filename = f"{identifier}.json"
# Save locally first
with open(filename, 'w') as f:
json.dump(data, f, indent=2)
try:
# Upload to HuggingFace (root directory)
upload_with_retry(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=AGENTS_REPO,
repo_type="dataset",
token=token
)
print(f"Saved assistant to HuggingFace: {filename}")
return True
finally:
# Always clean up local file, even if upload fails
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"Error saving assistant: {str(e)}")
return False
def load_leaderboard_data_from_hf():
"""
Load leaderboard data and monthly metrics from HuggingFace dataset.
Returns:
dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'metadata' keys
Returns None if file doesn't exist or error occurs
"""
try:
token = get_hf_token()
# Download file
file_path = hf_hub_download_with_backoff(
repo_id=LEADERBOARD_REPO,
filename=LEADERBOARD_FILENAME,
repo_type="dataset",
token=token
)
# Load JSON data
with open(file_path, 'r') as f:
data = json.load(f)
last_updated = data.get('metadata', {}).get('last_updated', 'Unknown')
print(f"Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
return data
except Exception as e:
print(f"Could not load leaderboard data from HuggingFace: {str(e)}")
return None
# =============================================================================
# UI FUNCTIONS
# =============================================================================
def create_monthly_metrics_plot(top_n=5):
"""
Create a Plotly figure showing monthly total membership events as bar charts.
Args:
top_n: Number of top assistants to show (default: 5)
"""
# Load from saved dataset
saved_data = load_leaderboard_data_from_hf()
if not saved_data or 'monthly_metrics' not in saved_data:
# Return an empty figure with a message
fig = go.Figure()
fig.add_annotation(
text="No data available for visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title=None,
xaxis_title=None,
height=500
)
return fig
metrics = saved_data['monthly_metrics']
print(f"Loaded monthly metrics from saved dataset")
# Apply top_n filter if specified
if top_n is not None and top_n > 0 and metrics.get('assistants'):
# Calculate total membership events for each assistant
agent_totals = []
for agent_name in metrics['assistants']:
agent_data = metrics['data'].get(agent_name, {})
total_membership_events = sum(agent_data.get('total_members', []))
agent_totals.append((agent_name, total_membership_events))
# Sort by total membership events and take top N
agent_totals.sort(key=lambda x: x[1], reverse=True)
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
# Filter metrics to only include top assistants
metrics = {
'assistants': top_agents,
'months': metrics['months'],
'data': {assistant: metrics['data'][assistant] for assistant in top_agents if assistant in metrics['data']}
}
if not metrics['assistants'] or not metrics['months']:
# Return an empty figure with a message
fig = go.Figure()
fig.add_annotation(
text="No data available for visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title=None,
xaxis_title=None,
height=500
)
return fig
# Create figure
fig = go.Figure()
# Generate unique colors for many assistants using HSL color space
def generate_color(index, total):
"""Generate distinct colors using HSL color space for better distribution"""
hue = (index * 360 / total) % 360
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
return f'hsl({hue}, {saturation}%, {lightness}%)'
assistants = metrics['assistants']
months = metrics['months']
data = metrics['data']
# Generate colors for all assistants
agent_colors = {assistant: generate_color(idx, len(assistants)) for idx, assistant in enumerate(assistants)}
# Add bar traces for each assistant
for idx, agent_name in enumerate(assistants):
color = agent_colors[agent_name]
agent_data = data[agent_name]
# Add bar trace for total members
# Only show bars for months where assistant has members
x_bars = []
y_bars = []
for month, count in zip(months, agent_data['total_members']):
if count > 0: # Only include months with members
x_bars.append(month)
y_bars.append(count)
if x_bars and y_bars: # Only add trace if there's data
fig.add_trace(
go.Bar(
x=x_bars,
y=y_bars,
name=agent_name,
marker=dict(color=color, opacity=0.7),
hovertemplate='<b>Assistant: %{fullData.name}</b><br>' +
'Month: %{x}<br>' +
'Total Membership Events: %{y}<br>' +
'<extra></extra>',
offsetgroup=agent_name # Group bars by assistant for proper spacing
)
)
# Update axes labels
fig.update_xaxes(title_text=None)
fig.update_yaxes(title_text="<b>Total Membership Events</b>")
# Update layout
show_legend = (top_n is not None and top_n <= 10)
fig.update_layout(
title=None,
hovermode='closest', # Show individual assistant info on hover
barmode='group',
height=600,
showlegend=show_legend,
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
)
return fig
def get_leaderboard_dataframe():
"""
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
Returns formatted DataFrame sorted by total membership events.
"""
# Load from saved dataset
saved_data = load_leaderboard_data_from_hf()
if not saved_data or 'leaderboard' not in saved_data:
print(f"No leaderboard data available")
# Return empty DataFrame with correct columns if no data
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
return pd.DataFrame(columns=column_names)
cache_dict = saved_data['leaderboard']
last_updated = saved_data.get('metadata', {}).get('last_updated', 'Unknown')
print(f"Loaded leaderboard from saved dataset (last updated: {last_updated})")
print(f"Cache dict size: {len(cache_dict)}")
if not cache_dict:
print("WARNING: cache_dict is empty!")
# Return empty DataFrame with correct columns if no data
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
return pd.DataFrame(columns=column_names)
rows = []
filtered_count = 0
for identifier, data in cache_dict.items():
total_membership_events = data.get('total_members', 0)
print(f" Assistant '{identifier}': {total_membership_events} total membership events")
# Filter out assistants with zero membership events
if total_membership_events == 0:
filtered_count += 1
continue
# Only include display-relevant fields
rows.append([
data.get('name', 'Unknown'),
data.get('website', 'N/A'),
total_membership_events,
])
print(f"Filtered out {filtered_count} assistants with 0 total membership events")
print(f"Leaderboard will show {len(rows)} assistants")
# Create DataFrame
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
df = pd.DataFrame(rows, columns=column_names)
# Ensure numeric types
numeric_cols = ["Total Membership Events"]
for col in numeric_cols:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
# Sort by Total Membership Events descending
if "Total Membership Events" in df.columns and not df.empty:
df = df.sort_values(by="Total Membership Events", ascending=False).reset_index(drop=True)
print(f"Final DataFrame shape: {df.shape}")
print("="*60 + "\n")
return df
def submit_agent(identifier, agent_name, organization, website):
"""
Submit a new assistant to the leaderboard.
Validates input and saves submission.
"""
# Validate required fields
if not identifier or not identifier.strip():
return "ERROR: GitHub identifier is required", gr.update()
if not agent_name or not agent_name.strip():
return "ERROR: Assistant name is required", gr.update()
if not organization or not organization.strip():
return "ERROR: Organization name is required", gr.update()
if not website or not website.strip():
return "ERROR: Website URL is required", gr.update()
# Clean inputs
identifier = identifier.strip()
agent_name = agent_name.strip()
organization = organization.strip()
website = website.strip()
# Validate GitHub identifier
is_valid, message = validate_github_username(identifier)
if not is_valid:
return f"ERROR: {message}", gr.update()
# Check for duplicates by loading assistants from HuggingFace
assistants = load_agents_from_hf()
if assistants:
existing_names = {assistant['github_identifier'] for assistant in assistants}
if identifier in existing_names:
return f"WARNING: Assistant with identifier '{identifier}' already exists", gr.update()
# Create submission
submission = {
'name': agent_name,
'organization': organization,
'github_identifier': identifier,
'website': website,
'status': 'active'
}
# Save to HuggingFace
if not save_agent_to_hf(submission):
return "ERROR: Failed to save submission", gr.update()
# Return success message - data will be populated by backend updates
return f"SUCCESS: Successfully submitted {agent_name}! Total membership events data will be automatically populated by the backend system via the maintainers.", gr.update()
# =============================================================================
# DATA RELOAD FUNCTION
# =============================================================================
def reload_leaderboard_data():
"""
Reload leaderboard data from HuggingFace.
This function is called by the scheduler on a daily basis.
"""
print(f"\n{'='*80}")
print(f"Reloading leaderboard data from HuggingFace...")
print(f"{'='*80}\n")
try:
data = load_leaderboard_data_from_hf()
if data:
print(f"Successfully reloaded leaderboard data")
print(f" Last updated: {data.get('metadata', {}).get('last_updated', 'Unknown')}")
print(f" Assistants: {len(data.get('leaderboard', {}))}")
else:
print(f"No data available")
except Exception as e:
print(f"Error reloading leaderboard data: {str(e)}")
print(f"{'='*80}\n")
# =============================================================================
# GRADIO APPLICATION
# =============================================================================
print(f"\nStarting SWE Assistant Member Leaderboard")
print(f" Data source: {LEADERBOARD_REPO}")
print(f" Reload frequency: Daily at 12:00 AM UTC\n")
# Start APScheduler for daily data reload at 12:00 AM UTC
scheduler = BackgroundScheduler(timezone="UTC")
scheduler.add_job(
reload_leaderboard_data,
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC daily
id='daily_data_reload',
name='Daily Data Reload',
replace_existing=True
)
scheduler.start()
print(f"\n{'='*80}")
print(f"Scheduler initialized successfully")
print(f"Reload schedule: Daily at 12:00 AM UTC")
print(f"On startup: Loads cached data from HuggingFace on demand")
print(f"{'='*80}\n")
# Create Gradio interface
with gr.Blocks(title="SWE Assistant Member Leaderboard", theme=gr.themes.Soft()) as app:
gr.Markdown("# SWE Assistant Member Leaderboard")
gr.Markdown(f"Track and compare total membership events by SWE assistants")
with gr.Tabs():
# Leaderboard Tab
with gr.Tab("Leaderboard"):
gr.Markdown("*Statistics are based on total membership events by assistants*")
leaderboard_table = Leaderboard(
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
datatype=LEADERBOARD_COLUMNS,
search_columns=["Assistant", "Website"],
filter_columns=[]
)
# Load leaderboard data when app starts
app.load(
fn=get_leaderboard_dataframe,
inputs=[],
outputs=[leaderboard_table]
)
# Monthly Metrics Section
gr.Markdown("---") # Divider
with gr.Group():
gr.Markdown("### Monthly Performance - Top 5 Assistants")
gr.Markdown("*Shows total membership events for the most active assistants*")
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
# Load monthly metrics when app starts
app.load(
fn=lambda: create_monthly_metrics_plot(),
inputs=[],
outputs=[monthly_metrics_plot]
)
# Submit Assistant Tab
with gr.Tab("Submit Your Assistant"):
gr.Markdown("Fill in the details below to add your assistant to the leaderboard.")
with gr.Row():
with gr.Column():
github_input = gr.Textbox(
label="GitHub Identifier*",
placeholder="Your assistant username (e.g., my-assistant[bot])"
)
name_input = gr.Textbox(
label="Assistant Name*",
placeholder="Your assistant's display name"
)
with gr.Column():
organization_input = gr.Textbox(
label="Organization*",
placeholder="Your organization or team name"
)
website_input = gr.Textbox(
label="Website*",
placeholder="https://your-assistant-website.com"
)
submit_button = gr.Button(
"Submit Assistant",
variant="primary"
)
submission_status = gr.Textbox(
label="Submission Status",
interactive=False
)
# Event handler
submit_button.click(
fn=submit_agent,
inputs=[github_input, name_input, organization_input, website_input],
outputs=[submission_status, leaderboard_table]
)
# Launch application
if __name__ == "__main__":
app.launch()
|