add msr
Browse files
msr.py
ADDED
|
@@ -0,0 +1,689 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Minimalist Issue Metadata Mining Script
|
| 3 |
+
Mines issue metadata from GitHub and saves to HuggingFace dataset.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
import requests
|
| 10 |
+
from datetime import datetime, timezone, timedelta
|
| 11 |
+
from collections import defaultdict
|
| 12 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
import random
|
| 15 |
+
|
| 16 |
+
# Load environment variables
|
| 17 |
+
load_dotenv()
|
| 18 |
+
|
| 19 |
+
# =============================================================================
|
| 20 |
+
# CONFIGURATION
|
| 21 |
+
# =============================================================================
|
| 22 |
+
|
| 23 |
+
AGENTS_REPO = "SWE-Arena/swe_agents"
|
| 24 |
+
ISSUE_METADATA_REPO = "SWE-Arena/issue_metadata"
|
| 25 |
+
LEADERBOARD_TIME_FRAME_DAYS = 180 # 6 months
|
| 26 |
+
|
| 27 |
+
# =============================================================================
|
| 28 |
+
# UTILITY FUNCTIONS
|
| 29 |
+
# =============================================================================
|
| 30 |
+
|
| 31 |
+
def load_jsonl(filename):
|
| 32 |
+
"""Load JSONL file and return list of dictionaries."""
|
| 33 |
+
if not os.path.exists(filename):
|
| 34 |
+
return []
|
| 35 |
+
|
| 36 |
+
data = []
|
| 37 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
| 38 |
+
for line in f:
|
| 39 |
+
line = line.strip()
|
| 40 |
+
if line:
|
| 41 |
+
try:
|
| 42 |
+
data.append(json.loads(line))
|
| 43 |
+
except json.JSONDecodeError as e:
|
| 44 |
+
print(f"Warning: Skipping invalid JSON line: {e}")
|
| 45 |
+
return data
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def save_jsonl(filename, data):
|
| 49 |
+
"""Save list of dictionaries to JSONL file."""
|
| 50 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
| 51 |
+
for item in data:
|
| 52 |
+
f.write(json.dumps(item) + '\n')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_github_token():
|
| 56 |
+
"""Get GitHub token from environment variables."""
|
| 57 |
+
token = os.getenv('GITHUB_TOKEN')
|
| 58 |
+
if not token:
|
| 59 |
+
print("Warning: GITHUB_TOKEN not found. API rate limits: 60/hour (authenticated: 5000/hour)")
|
| 60 |
+
return token
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def get_hf_token():
|
| 64 |
+
"""Get HuggingFace token from environment variables."""
|
| 65 |
+
token = os.getenv('HF_TOKEN')
|
| 66 |
+
if not token:
|
| 67 |
+
print("Warning: HF_TOKEN not found in environment variables")
|
| 68 |
+
return token
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# =============================================================================
|
| 72 |
+
# GITHUB API FUNCTIONS
|
| 73 |
+
# =============================================================================
|
| 74 |
+
|
| 75 |
+
def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30):
|
| 76 |
+
"""
|
| 77 |
+
Perform an HTTP request with exponential backoff and jitter for GitHub API.
|
| 78 |
+
Retries on 403/429 (rate limits), 5xx server errors, and transient network exceptions.
|
| 79 |
+
"""
|
| 80 |
+
delay = 1.0
|
| 81 |
+
for attempt in range(max_retries):
|
| 82 |
+
try:
|
| 83 |
+
resp = requests.request(
|
| 84 |
+
method,
|
| 85 |
+
url,
|
| 86 |
+
headers=headers or {},
|
| 87 |
+
params=params,
|
| 88 |
+
json=json_body,
|
| 89 |
+
data=data,
|
| 90 |
+
timeout=timeout
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
status = resp.status_code
|
| 94 |
+
|
| 95 |
+
# Success
|
| 96 |
+
if 200 <= status < 300:
|
| 97 |
+
return resp
|
| 98 |
+
|
| 99 |
+
# Rate limits or server errors -> retry with backoff
|
| 100 |
+
if status in (403, 429) or 500 <= status < 600:
|
| 101 |
+
wait = None
|
| 102 |
+
|
| 103 |
+
# Prefer Retry-After when present
|
| 104 |
+
retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
|
| 105 |
+
if retry_after:
|
| 106 |
+
try:
|
| 107 |
+
wait = float(retry_after)
|
| 108 |
+
except Exception:
|
| 109 |
+
wait = None
|
| 110 |
+
|
| 111 |
+
# Fallback to X-RateLimit-Reset when 403/429
|
| 112 |
+
if wait is None and status in (403, 429):
|
| 113 |
+
reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
|
| 114 |
+
if reset_hdr:
|
| 115 |
+
try:
|
| 116 |
+
reset_ts = int(float(reset_hdr))
|
| 117 |
+
wait = max(reset_ts - time.time() + 2, 1)
|
| 118 |
+
except Exception:
|
| 119 |
+
wait = None
|
| 120 |
+
|
| 121 |
+
# Final fallback: exponential backoff with jitter
|
| 122 |
+
if wait is None:
|
| 123 |
+
wait = delay + random.uniform(0, 0.5)
|
| 124 |
+
|
| 125 |
+
# Cap individual wait to avoid extreme sleeps
|
| 126 |
+
wait = max(1.0, min(wait, 120.0))
|
| 127 |
+
print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 128 |
+
time.sleep(wait)
|
| 129 |
+
delay = min(delay * 2, 60.0)
|
| 130 |
+
continue
|
| 131 |
+
|
| 132 |
+
# Non-retryable error; return response for caller to handle
|
| 133 |
+
return resp
|
| 134 |
+
|
| 135 |
+
except requests.RequestException as e:
|
| 136 |
+
# Network error -> retry with backoff
|
| 137 |
+
wait = delay + random.uniform(0, 0.5)
|
| 138 |
+
wait = max(1.0, min(wait, 60.0))
|
| 139 |
+
print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 140 |
+
time.sleep(wait)
|
| 141 |
+
delay = min(delay * 2, 60.0)
|
| 142 |
+
|
| 143 |
+
print(f"Exceeded max retries for {url}")
|
| 144 |
+
return None
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def fetch_issues_with_time_partition(base_query, start_date, end_date, headers, issues_by_id, depth=0):
|
| 148 |
+
"""
|
| 149 |
+
Fetch issues within a specific time range using time-based partitioning.
|
| 150 |
+
Recursively splits the time range if hitting the 1000-result limit.
|
| 151 |
+
Supports splitting by day, hour, minute, and second as needed.
|
| 152 |
+
|
| 153 |
+
Returns the number of issues found in this time partition.
|
| 154 |
+
"""
|
| 155 |
+
# Calculate time difference
|
| 156 |
+
time_diff = end_date - start_date
|
| 157 |
+
total_seconds = time_diff.total_seconds()
|
| 158 |
+
|
| 159 |
+
# Determine granularity and format dates accordingly
|
| 160 |
+
if total_seconds >= 86400: # >= 1 day
|
| 161 |
+
# Use day granularity (YYYY-MM-DD)
|
| 162 |
+
start_str = start_date.strftime('%Y-%m-%d')
|
| 163 |
+
end_str = end_date.strftime('%Y-%m-%d')
|
| 164 |
+
elif total_seconds >= 3600: # >= 1 hour but < 1 day
|
| 165 |
+
# Use hour granularity (YYYY-MM-DDTHH:MM:SSZ)
|
| 166 |
+
start_str = start_date.strftime('%Y-%m-%dT%H:00:00Z')
|
| 167 |
+
end_str = end_date.strftime('%Y-%m-%dT%H:59:59Z')
|
| 168 |
+
elif total_seconds >= 60: # >= 1 minute but < 1 hour
|
| 169 |
+
# Use minute granularity (YYYY-MM-DDTHH:MM:SSZ)
|
| 170 |
+
start_str = start_date.strftime('%Y-%m-%dT%H:%M:00Z')
|
| 171 |
+
end_str = end_date.strftime('%Y-%m-%dT%H:%M:59Z')
|
| 172 |
+
else: # < 1 minute
|
| 173 |
+
# Use second granularity (YYYY-MM-DDTHH:MM:SSZ)
|
| 174 |
+
start_str = start_date.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 175 |
+
end_str = end_date.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 176 |
+
|
| 177 |
+
# Add date range to query
|
| 178 |
+
query = f'{base_query} created:{start_str}..{end_str}'
|
| 179 |
+
|
| 180 |
+
indent = " " + " " * depth
|
| 181 |
+
print(f"{indent}Searching range {start_str} to {end_str}...")
|
| 182 |
+
|
| 183 |
+
page = 1
|
| 184 |
+
per_page = 100
|
| 185 |
+
total_in_partition = 0
|
| 186 |
+
|
| 187 |
+
while True:
|
| 188 |
+
url = 'https://api.github.com/search/issues'
|
| 189 |
+
params = {
|
| 190 |
+
'q': query,
|
| 191 |
+
'per_page': per_page,
|
| 192 |
+
'page': page,
|
| 193 |
+
'sort': 'created',
|
| 194 |
+
'order': 'asc'
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
try:
|
| 198 |
+
response = request_with_backoff('GET', url, headers=headers, params=params)
|
| 199 |
+
if response is None:
|
| 200 |
+
print(f"{indent} Error: retries exhausted for range {start_str} to {end_str}")
|
| 201 |
+
return total_in_partition
|
| 202 |
+
|
| 203 |
+
if response.status_code != 200:
|
| 204 |
+
print(f"{indent} Error: HTTP {response.status_code} for range {start_str} to {end_str}")
|
| 205 |
+
return total_in_partition
|
| 206 |
+
|
| 207 |
+
data = response.json()
|
| 208 |
+
total_count = data.get('total_count', 0)
|
| 209 |
+
items = data.get('items', [])
|
| 210 |
+
|
| 211 |
+
if not items:
|
| 212 |
+
break
|
| 213 |
+
|
| 214 |
+
# Add issues to global dict
|
| 215 |
+
for issue in items:
|
| 216 |
+
issue_id = issue.get('id')
|
| 217 |
+
if issue_id and issue_id not in issues_by_id:
|
| 218 |
+
issues_by_id[issue_id] = issue
|
| 219 |
+
total_in_partition += 1
|
| 220 |
+
|
| 221 |
+
# Check if we hit the 1000-result limit
|
| 222 |
+
if total_count > 1000 and page == 10:
|
| 223 |
+
print(f"{indent} ⚠️ Hit 1000-result limit ({total_count} total). Splitting time range...")
|
| 224 |
+
|
| 225 |
+
# Determine how to split based on time range duration
|
| 226 |
+
if total_seconds < 2: # Less than 2 seconds - can't split further
|
| 227 |
+
print(f"{indent} ⚠️ Cannot split further (range < 2 seconds). Some results may be missing.")
|
| 228 |
+
break
|
| 229 |
+
|
| 230 |
+
elif total_seconds < 120: # Less than 2 minutes - split by seconds
|
| 231 |
+
# Split into 2-4 parts depending on range
|
| 232 |
+
num_splits = min(4, max(2, int(total_seconds / 30)))
|
| 233 |
+
split_duration = time_diff / num_splits
|
| 234 |
+
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
|
| 235 |
+
|
| 236 |
+
total_from_splits = 0
|
| 237 |
+
for i in range(num_splits):
|
| 238 |
+
split_start = split_dates[i]
|
| 239 |
+
split_end = split_dates[i + 1]
|
| 240 |
+
# Avoid overlapping ranges (add 1 second to start)
|
| 241 |
+
if i > 0:
|
| 242 |
+
split_start = split_start + timedelta(seconds=1)
|
| 243 |
+
|
| 244 |
+
count = fetch_issues_with_time_partition(
|
| 245 |
+
base_query, split_start, split_end, headers, issues_by_id, depth + 1
|
| 246 |
+
)
|
| 247 |
+
total_from_splits += count
|
| 248 |
+
|
| 249 |
+
return total_from_splits
|
| 250 |
+
|
| 251 |
+
elif total_seconds < 7200: # Less than 2 hours - split by minutes
|
| 252 |
+
# Split into 2-4 parts
|
| 253 |
+
num_splits = min(4, max(2, int(total_seconds / 1800)))
|
| 254 |
+
split_duration = time_diff / num_splits
|
| 255 |
+
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
|
| 256 |
+
|
| 257 |
+
total_from_splits = 0
|
| 258 |
+
for i in range(num_splits):
|
| 259 |
+
split_start = split_dates[i]
|
| 260 |
+
split_end = split_dates[i + 1]
|
| 261 |
+
# Avoid overlapping ranges (add 1 minute to start)
|
| 262 |
+
if i > 0:
|
| 263 |
+
split_start = split_start + timedelta(minutes=1)
|
| 264 |
+
|
| 265 |
+
count = fetch_issues_with_time_partition(
|
| 266 |
+
base_query, split_start, split_end, headers, issues_by_id, depth + 1
|
| 267 |
+
)
|
| 268 |
+
total_from_splits += count
|
| 269 |
+
|
| 270 |
+
return total_from_splits
|
| 271 |
+
|
| 272 |
+
elif total_seconds < 172800: # Less than 2 days - split by hours
|
| 273 |
+
# Split into 2-4 parts
|
| 274 |
+
num_splits = min(4, max(2, int(total_seconds / 43200)))
|
| 275 |
+
split_duration = time_diff / num_splits
|
| 276 |
+
split_dates = [start_date + split_duration * i for i in range(num_splits + 1)]
|
| 277 |
+
|
| 278 |
+
total_from_splits = 0
|
| 279 |
+
for i in range(num_splits):
|
| 280 |
+
split_start = split_dates[i]
|
| 281 |
+
split_end = split_dates[i + 1]
|
| 282 |
+
# Avoid overlapping ranges (add 1 hour to start)
|
| 283 |
+
if i > 0:
|
| 284 |
+
split_start = split_start + timedelta(hours=1)
|
| 285 |
+
|
| 286 |
+
count = fetch_issues_with_time_partition(
|
| 287 |
+
base_query, split_start, split_end, headers, issues_by_id, depth + 1
|
| 288 |
+
)
|
| 289 |
+
total_from_splits += count
|
| 290 |
+
|
| 291 |
+
return total_from_splits
|
| 292 |
+
|
| 293 |
+
else: # 2+ days - split by days
|
| 294 |
+
days_diff = time_diff.days
|
| 295 |
+
|
| 296 |
+
# Use aggressive splitting for large ranges or deep recursion
|
| 297 |
+
# Split into 4 parts if range is > 30 days, otherwise split in half
|
| 298 |
+
if days_diff > 30 or depth > 5:
|
| 299 |
+
# Split into 4 parts for more aggressive partitioning
|
| 300 |
+
quarter_diff = time_diff / 4
|
| 301 |
+
split_dates = [
|
| 302 |
+
start_date,
|
| 303 |
+
start_date + quarter_diff,
|
| 304 |
+
start_date + quarter_diff * 2,
|
| 305 |
+
start_date + quarter_diff * 3,
|
| 306 |
+
end_date
|
| 307 |
+
]
|
| 308 |
+
|
| 309 |
+
total_from_splits = 0
|
| 310 |
+
for i in range(4):
|
| 311 |
+
split_start = split_dates[i]
|
| 312 |
+
split_end = split_dates[i + 1]
|
| 313 |
+
# Avoid overlapping ranges
|
| 314 |
+
if i > 0:
|
| 315 |
+
split_start = split_start + timedelta(days=1)
|
| 316 |
+
|
| 317 |
+
count = fetch_issues_with_time_partition(
|
| 318 |
+
base_query, split_start, split_end, headers, issues_by_id, depth + 1
|
| 319 |
+
)
|
| 320 |
+
total_from_splits += count
|
| 321 |
+
|
| 322 |
+
return total_from_splits
|
| 323 |
+
else:
|
| 324 |
+
# Binary split for smaller ranges
|
| 325 |
+
mid_date = start_date + time_diff / 2
|
| 326 |
+
|
| 327 |
+
# Recursively fetch both halves
|
| 328 |
+
count1 = fetch_issues_with_time_partition(
|
| 329 |
+
base_query, start_date, mid_date, headers, issues_by_id, depth + 1
|
| 330 |
+
)
|
| 331 |
+
count2 = fetch_issues_with_time_partition(
|
| 332 |
+
base_query, mid_date + timedelta(days=1), end_date, headers, issues_by_id, depth + 1
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
return count1 + count2
|
| 336 |
+
|
| 337 |
+
# Normal pagination: check if there are more pages
|
| 338 |
+
if len(items) < per_page or page >= 10:
|
| 339 |
+
break
|
| 340 |
+
|
| 341 |
+
page += 1
|
| 342 |
+
time.sleep(0.5) # Courtesy delay between pages
|
| 343 |
+
|
| 344 |
+
except Exception as e:
|
| 345 |
+
print(f"{indent} Error fetching range {start_str} to {end_str}: {str(e)}")
|
| 346 |
+
return total_in_partition
|
| 347 |
+
|
| 348 |
+
if total_in_partition > 0:
|
| 349 |
+
print(f"{indent} ✓ Found {total_in_partition} issues in range {start_str} to {end_str}")
|
| 350 |
+
|
| 351 |
+
return total_in_partition
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def extract_issue_metadata(issue):
|
| 355 |
+
"""
|
| 356 |
+
Extract minimal issue metadata for efficient storage.
|
| 357 |
+
Only keeps essential fields: html_url, created_at, closed_at, state_reason.
|
| 358 |
+
|
| 359 |
+
Issue states:
|
| 360 |
+
- state: "open" or "closed"
|
| 361 |
+
- state_reason: "completed" (resolved), "not_planned" (closed as not planned), or None (still open)
|
| 362 |
+
"""
|
| 363 |
+
created_at = issue.get('created_at')
|
| 364 |
+
closed_at = issue.get('closed_at')
|
| 365 |
+
state = issue.get('state')
|
| 366 |
+
state_reason = issue.get('state_reason')
|
| 367 |
+
|
| 368 |
+
return {
|
| 369 |
+
'html_url': issue.get('html_url'),
|
| 370 |
+
'created_at': created_at,
|
| 371 |
+
'closed_at': closed_at,
|
| 372 |
+
'state': state,
|
| 373 |
+
'state_reason': state_reason
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def fetch_all_issues_metadata(identifier, agent_name, token=None):
|
| 378 |
+
"""
|
| 379 |
+
Fetch issues associated with a GitHub user or bot for the past LEADERBOARD_TIME_FRAME_DAYS.
|
| 380 |
+
Returns lightweight metadata instead of full issue objects.
|
| 381 |
+
|
| 382 |
+
This function employs time-based partitioning to navigate GitHub's 1000-result limit per query.
|
| 383 |
+
It searches using multiple query patterns:
|
| 384 |
+
- is:issue author:{identifier} (issues authored by the bot)
|
| 385 |
+
- is:issue assignee:{identifier} (issues assigned to the bot)
|
| 386 |
+
|
| 387 |
+
Args:
|
| 388 |
+
identifier: GitHub username or bot identifier
|
| 389 |
+
agent_name: Human-readable name of the agent for metadata purposes
|
| 390 |
+
token: GitHub API token for authentication
|
| 391 |
+
|
| 392 |
+
Returns:
|
| 393 |
+
List of dictionaries containing minimal issue metadata
|
| 394 |
+
"""
|
| 395 |
+
headers = {'Authorization': f'token {token}'} if token else {}
|
| 396 |
+
|
| 397 |
+
# Define query patterns for issues:
|
| 398 |
+
# 1) author pattern: issues authored by the identifier
|
| 399 |
+
# 2) assignee pattern: issues assigned to the identifier
|
| 400 |
+
stripped_id = identifier.replace('[bot]', '')
|
| 401 |
+
query_patterns = []
|
| 402 |
+
|
| 403 |
+
# Always add author and assignee pattern
|
| 404 |
+
query_patterns.append(f'is:issue author:{identifier}')
|
| 405 |
+
query_patterns.append(f'is:issue assignee:{identifier}')
|
| 406 |
+
query_patterns.append(f'is:issue assignee:{stripped_id}')
|
| 407 |
+
|
| 408 |
+
# Use a dict to deduplicate issues by ID
|
| 409 |
+
issues_by_id = {}
|
| 410 |
+
|
| 411 |
+
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS
|
| 412 |
+
current_time = datetime.now(timezone.utc)
|
| 413 |
+
start_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 414 |
+
end_date = current_time
|
| 415 |
+
|
| 416 |
+
for query_pattern in query_patterns:
|
| 417 |
+
print(f"\n🔍 Searching with query: {query_pattern}")
|
| 418 |
+
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 419 |
+
|
| 420 |
+
pattern_start_time = time.time()
|
| 421 |
+
initial_count = len(issues_by_id)
|
| 422 |
+
|
| 423 |
+
# Fetch with time partitioning
|
| 424 |
+
issues_found = fetch_issues_with_time_partition(
|
| 425 |
+
query_pattern,
|
| 426 |
+
start_date,
|
| 427 |
+
end_date,
|
| 428 |
+
headers,
|
| 429 |
+
issues_by_id
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
pattern_duration = time.time() - pattern_start_time
|
| 433 |
+
new_issues = len(issues_by_id) - initial_count
|
| 434 |
+
|
| 435 |
+
print(f" ✓ Pattern complete: {new_issues} new issues found ({issues_found} total fetched, {len(issues_by_id) - initial_count - (issues_found - new_issues)} duplicates)")
|
| 436 |
+
print(f" ⏱️ Time taken: {pattern_duration:.1f} seconds")
|
| 437 |
+
|
| 438 |
+
time.sleep(1.0)
|
| 439 |
+
|
| 440 |
+
all_issues = list(issues_by_id.values())
|
| 441 |
+
|
| 442 |
+
print(f"\n✅ COMPLETE: Found {len(all_issues)} unique issues for {identifier}")
|
| 443 |
+
print(f"📦 Extracting minimal metadata...")
|
| 444 |
+
|
| 445 |
+
metadata_list = [extract_issue_metadata(issue) for issue in all_issues]
|
| 446 |
+
|
| 447 |
+
# Calculate memory savings
|
| 448 |
+
import sys
|
| 449 |
+
original_size = sys.getsizeof(str(all_issues))
|
| 450 |
+
metadata_size = sys.getsizeof(str(metadata_list))
|
| 451 |
+
savings_pct = ((original_size - metadata_size) / original_size * 100) if original_size > 0 else 0
|
| 452 |
+
|
| 453 |
+
print(f"💾 Memory efficiency: {original_size // 1024}KB → {metadata_size // 1024}KB (saved {savings_pct:.1f}%)")
|
| 454 |
+
|
| 455 |
+
return metadata_list
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
# =============================================================================
|
| 459 |
+
# HUGGINGFACE STORAGE FUNCTIONS
|
| 460 |
+
# =============================================================================
|
| 461 |
+
|
| 462 |
+
def group_metadata_by_date(metadata_list):
|
| 463 |
+
"""
|
| 464 |
+
Group issue metadata by exact date (year.month.day) for efficient daily storage.
|
| 465 |
+
Returns dict: {(year, month, day): [metadata_list]}
|
| 466 |
+
"""
|
| 467 |
+
grouped = defaultdict(list)
|
| 468 |
+
|
| 469 |
+
for issue_meta in metadata_list:
|
| 470 |
+
created_at = issue_meta.get('created_at')
|
| 471 |
+
if not created_at:
|
| 472 |
+
continue
|
| 473 |
+
|
| 474 |
+
try:
|
| 475 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 476 |
+
key = (dt.year, dt.month, dt.day)
|
| 477 |
+
grouped[key].append(issue_meta)
|
| 478 |
+
except Exception as e:
|
| 479 |
+
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 480 |
+
|
| 481 |
+
return dict(grouped)
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 485 |
+
"""
|
| 486 |
+
Upload file to HuggingFace with exponential backoff retry logic.
|
| 487 |
+
"""
|
| 488 |
+
delay = 2.0
|
| 489 |
+
|
| 490 |
+
for attempt in range(max_retries):
|
| 491 |
+
try:
|
| 492 |
+
api.upload_file(
|
| 493 |
+
path_or_fileobj=path_or_fileobj,
|
| 494 |
+
path_in_repo=path_in_repo,
|
| 495 |
+
repo_id=repo_id,
|
| 496 |
+
repo_type=repo_type,
|
| 497 |
+
token=token
|
| 498 |
+
)
|
| 499 |
+
if attempt > 0:
|
| 500 |
+
print(f" ✓ Upload succeeded on attempt {attempt + 1}/{max_retries}")
|
| 501 |
+
return True
|
| 502 |
+
|
| 503 |
+
except Exception as e:
|
| 504 |
+
if attempt < max_retries - 1:
|
| 505 |
+
wait_time = delay + random.uniform(0, 1.0)
|
| 506 |
+
print(f" ⚠️ Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
| 507 |
+
print(f" ⏳ Retrying in {wait_time:.1f} seconds...")
|
| 508 |
+
time.sleep(wait_time)
|
| 509 |
+
delay = min(delay * 2, 60.0)
|
| 510 |
+
else:
|
| 511 |
+
print(f" ✗ Upload failed after {max_retries} attempts: {str(e)}")
|
| 512 |
+
raise
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
def save_issue_metadata_to_hf(metadata_list, agent_identifier):
|
| 516 |
+
"""
|
| 517 |
+
Save issue metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 518 |
+
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's issues.
|
| 519 |
+
|
| 520 |
+
This function APPENDS new metadata and DEDUPLICATES by html_url.
|
| 521 |
+
|
| 522 |
+
Args:
|
| 523 |
+
metadata_list: List of issue metadata dictionaries
|
| 524 |
+
agent_identifier: GitHub identifier of the agent (used as folder name)
|
| 525 |
+
"""
|
| 526 |
+
try:
|
| 527 |
+
token = get_hf_token()
|
| 528 |
+
if not token:
|
| 529 |
+
raise Exception("No HuggingFace token found")
|
| 530 |
+
|
| 531 |
+
api = HfApi()
|
| 532 |
+
|
| 533 |
+
# Group by exact date (year, month, day)
|
| 534 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 535 |
+
|
| 536 |
+
for (issue_year, month, day), day_metadata in grouped.items():
|
| 537 |
+
filename = f"{agent_identifier}/{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 538 |
+
local_filename = f"{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 539 |
+
print(f"📤 Uploading {len(day_metadata)} issues to {filename}...")
|
| 540 |
+
|
| 541 |
+
# Download existing file if it exists
|
| 542 |
+
existing_metadata = []
|
| 543 |
+
try:
|
| 544 |
+
file_path = hf_hub_download(
|
| 545 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 546 |
+
filename=filename,
|
| 547 |
+
repo_type="dataset",
|
| 548 |
+
token=token
|
| 549 |
+
)
|
| 550 |
+
existing_metadata = load_jsonl(file_path)
|
| 551 |
+
print(f" Found {len(existing_metadata)} existing issues in {filename}")
|
| 552 |
+
except Exception:
|
| 553 |
+
print(f" No existing file found for {filename}, creating new")
|
| 554 |
+
|
| 555 |
+
# Merge and deduplicate by html_url
|
| 556 |
+
existing_by_url = {meta['html_url']: meta for meta in existing_metadata if meta.get('html_url')}
|
| 557 |
+
new_by_url = {meta['html_url']: meta for meta in day_metadata if meta.get('html_url')}
|
| 558 |
+
|
| 559 |
+
# Update with new data (new data overwrites old)
|
| 560 |
+
existing_by_url.update(new_by_url)
|
| 561 |
+
merged_metadata = list(existing_by_url.values())
|
| 562 |
+
|
| 563 |
+
# Save locally
|
| 564 |
+
save_jsonl(local_filename, merged_metadata)
|
| 565 |
+
|
| 566 |
+
try:
|
| 567 |
+
# Upload to HuggingFace with folder path
|
| 568 |
+
upload_with_retry(
|
| 569 |
+
api=api,
|
| 570 |
+
path_or_fileobj=local_filename,
|
| 571 |
+
path_in_repo=filename,
|
| 572 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 573 |
+
repo_type="dataset",
|
| 574 |
+
token=token
|
| 575 |
+
)
|
| 576 |
+
print(f" ✓ Saved {len(merged_metadata)} total issues to {filename}")
|
| 577 |
+
finally:
|
| 578 |
+
# Always clean up local file, even if upload fails
|
| 579 |
+
if os.path.exists(local_filename):
|
| 580 |
+
os.remove(local_filename)
|
| 581 |
+
|
| 582 |
+
return True
|
| 583 |
+
|
| 584 |
+
except Exception as e:
|
| 585 |
+
print(f"✗ Error saving issue metadata: {str(e)}")
|
| 586 |
+
return False
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
def load_agents_from_hf():
|
| 590 |
+
"""Load all agent metadata JSON files from HuggingFace dataset."""
|
| 591 |
+
try:
|
| 592 |
+
api = HfApi()
|
| 593 |
+
agents = []
|
| 594 |
+
|
| 595 |
+
# List all files in the repository
|
| 596 |
+
files = api.list_repo_files(repo_id=AGENTS_REPO, repo_type="dataset")
|
| 597 |
+
|
| 598 |
+
# Filter for JSON files only
|
| 599 |
+
json_files = [f for f in files if f.endswith('.json')]
|
| 600 |
+
|
| 601 |
+
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 602 |
+
|
| 603 |
+
# Download and parse each JSON file
|
| 604 |
+
for json_file in json_files:
|
| 605 |
+
try:
|
| 606 |
+
file_path = hf_hub_download(
|
| 607 |
+
repo_id=AGENTS_REPO,
|
| 608 |
+
filename=json_file,
|
| 609 |
+
repo_type="dataset"
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
with open(file_path, 'r') as f:
|
| 613 |
+
agent_data = json.load(f)
|
| 614 |
+
agents.append(agent_data)
|
| 615 |
+
|
| 616 |
+
except Exception as e:
|
| 617 |
+
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 618 |
+
continue
|
| 619 |
+
|
| 620 |
+
print(f"✓ Loaded {len(agents)} agents from HuggingFace")
|
| 621 |
+
return agents
|
| 622 |
+
|
| 623 |
+
except Exception as e:
|
| 624 |
+
print(f"Could not load agents from HuggingFace: {str(e)}")
|
| 625 |
+
return []
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
# =============================================================================
|
| 629 |
+
# MAIN MINING FUNCTION
|
| 630 |
+
# =============================================================================
|
| 631 |
+
|
| 632 |
+
def mine_all_agents():
|
| 633 |
+
"""
|
| 634 |
+
Mine issue metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 635 |
+
"""
|
| 636 |
+
token = get_github_token()
|
| 637 |
+
|
| 638 |
+
# Load agent metadata from HuggingFace
|
| 639 |
+
agents = load_agents_from_hf()
|
| 640 |
+
if not agents:
|
| 641 |
+
print("No agents found in HuggingFace dataset")
|
| 642 |
+
return
|
| 643 |
+
|
| 644 |
+
print(f"\n{'='*80}")
|
| 645 |
+
print(f"Starting issue metadata mining for {len(agents)} agents")
|
| 646 |
+
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 647 |
+
print(f"{'='*80}\n")
|
| 648 |
+
|
| 649 |
+
# Mine each agent
|
| 650 |
+
for agent in agents:
|
| 651 |
+
identifier = agent.get('github_identifier')
|
| 652 |
+
agent_name = agent.get('agent_name', 'Unknown')
|
| 653 |
+
|
| 654 |
+
if not identifier:
|
| 655 |
+
print(f"Warning: Skipping agent without identifier: {agent}")
|
| 656 |
+
continue
|
| 657 |
+
|
| 658 |
+
try:
|
| 659 |
+
print(f"\n{'='*80}")
|
| 660 |
+
print(f"Processing: {agent_name} ({identifier})")
|
| 661 |
+
print(f"{'='*80}")
|
| 662 |
+
|
| 663 |
+
# Fetch issue metadata
|
| 664 |
+
metadata = fetch_all_issues_metadata(identifier, agent_name, token)
|
| 665 |
+
|
| 666 |
+
if metadata:
|
| 667 |
+
print(f"💾 Saving {len(metadata)} issue records...")
|
| 668 |
+
save_issue_metadata_to_hf(metadata, identifier)
|
| 669 |
+
print(f"✓ Successfully processed {agent_name}")
|
| 670 |
+
else:
|
| 671 |
+
print(f" No issues found for {agent_name}")
|
| 672 |
+
|
| 673 |
+
except Exception as e:
|
| 674 |
+
print(f"✗ Error processing {identifier}: {str(e)}")
|
| 675 |
+
import traceback
|
| 676 |
+
traceback.print_exc()
|
| 677 |
+
continue
|
| 678 |
+
|
| 679 |
+
print(f"\n{'='*80}")
|
| 680 |
+
print(f"✅ Mining complete for all agents")
|
| 681 |
+
print(f"{'='*80}\n")
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
# =============================================================================
|
| 685 |
+
# ENTRY POINT
|
| 686 |
+
# =============================================================================
|
| 687 |
+
|
| 688 |
+
if __name__ == "__main__":
|
| 689 |
+
mine_all_agents()
|