zhimin-z
commited on
Commit
·
5998589
1
Parent(s):
68ab628
refine
Browse files- .gitignore +2 -1
- Dockerfile +6 -18
- README.md +0 -1
- app.py +239 -1322
- docker-compose.yml +23 -0
- msr.py +573 -660
- requirements.txt +3 -5
.gitignore
CHANGED
|
@@ -2,4 +2,5 @@
|
|
| 2 |
*.env
|
| 3 |
*.venv
|
| 4 |
*.ipynb
|
| 5 |
-
*.pyc
|
|
|
|
|
|
| 2 |
*.env
|
| 3 |
*.venv
|
| 4 |
*.ipynb
|
| 5 |
+
*.pyc
|
| 6 |
+
*.duckdb
|
Dockerfile
CHANGED
|
@@ -1,34 +1,22 @@
|
|
| 1 |
-
# Use official Python runtime as base image
|
| 2 |
FROM python:3.12-slim
|
| 3 |
|
| 4 |
# Set working directory
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
-
# Install system dependencies
|
| 8 |
RUN apt-get update && apt-get install -y \
|
| 9 |
-
|
|
|
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
| 12 |
-
# Copy requirements
|
| 13 |
COPY requirements.txt .
|
| 14 |
|
| 15 |
# Install Python dependencies
|
| 16 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
|
| 18 |
-
# Copy application files
|
| 19 |
-
COPY .env .
|
| 20 |
-
COPY msr.py .
|
| 21 |
-
|
| 22 |
-
# Create a non-root user for security (optional but recommended)
|
| 23 |
-
RUN useradd -m -u 1000 appuser && chown -R appuser:appuser /app
|
| 24 |
-
USER appuser
|
| 25 |
-
|
| 26 |
-
# Expose port for Gradio web interface (default is 7860)
|
| 27 |
-
EXPOSE 7860
|
| 28 |
-
|
| 29 |
# Set environment variables
|
| 30 |
-
ENV
|
| 31 |
-
ENV GRADIO_SERVER_PORT=7860
|
| 32 |
|
| 33 |
-
# Run the
|
| 34 |
CMD ["python", "msr.py"]
|
|
|
|
|
|
|
| 1 |
FROM python:3.12-slim
|
| 2 |
|
| 3 |
# Set working directory
|
| 4 |
WORKDIR /app
|
| 5 |
|
| 6 |
+
# Install system dependencies
|
| 7 |
RUN apt-get update && apt-get install -y \
|
| 8 |
+
gcc \
|
| 9 |
+
g++ \
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
| 12 |
+
# Copy requirements file
|
| 13 |
COPY requirements.txt .
|
| 14 |
|
| 15 |
# Install Python dependencies
|
| 16 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Set environment variables
|
| 19 |
+
ENV PYTHONUNBUFFERED=1
|
|
|
|
| 20 |
|
| 21 |
+
# Run the mining script with scheduler
|
| 22 |
CMD ["python", "msr.py"]
|
README.md
CHANGED
|
@@ -52,7 +52,6 @@ Behind the scenes, we're doing a few things:
|
|
| 52 |
|
| 53 |
**Data Collection**
|
| 54 |
We search GitHub using multiple query patterns to catch all issues associated with an agent:
|
| 55 |
-
- Issues authored by the agent (`author:agent-name`)
|
| 56 |
- Issues assigned to the agent (`assignee:agent-name`)
|
| 57 |
|
| 58 |
**Regular Updates**
|
|
|
|
| 52 |
|
| 53 |
**Data Collection**
|
| 54 |
We search GitHub using multiple query patterns to catch all issues associated with an agent:
|
|
|
|
| 55 |
- Issues assigned to the agent (`assignee:agent-name`)
|
| 56 |
|
| 57 |
**Regular Updates**
|
app.py
CHANGED
|
@@ -3,12 +3,10 @@ from gradio_leaderboard import Leaderboard, ColumnFilter
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
-
import tempfile
|
| 7 |
import requests
|
| 8 |
-
from datetime import datetime, timezone, timedelta
|
| 9 |
-
from collections import defaultdict
|
| 10 |
from huggingface_hub import HfApi, hf_hub_download
|
| 11 |
from huggingface_hub.errors import HfHubHTTPError
|
|
|
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
import pandas as pd
|
| 14 |
import random
|
|
@@ -16,8 +14,6 @@ import plotly.graph_objects as go
|
|
| 16 |
from plotly.subplots import make_subplots
|
| 17 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 18 |
from apscheduler.triggers.cron import CronTrigger
|
| 19 |
-
from google.cloud import bigquery
|
| 20 |
-
import backoff
|
| 21 |
|
| 22 |
# Load environment variables
|
| 23 |
load_dotenv()
|
|
@@ -27,10 +23,8 @@ load_dotenv()
|
|
| 27 |
# =============================================================================
|
| 28 |
|
| 29 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
|
| 33 |
-
UPDATE_TIME_FRAME_DAYS = 30 # How often to re-mine data via BigQuery
|
| 34 |
|
| 35 |
LEADERBOARD_COLUMNS = [
|
| 36 |
("Agent Name", "string"),
|
|
@@ -45,1005 +39,57 @@ LEADERBOARD_COLUMNS = [
|
|
| 45 |
# =============================================================================
|
| 46 |
|
| 47 |
def is_rate_limit_error(e):
|
| 48 |
-
"""Check if
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
@backoff.on_exception(
|
| 53 |
backoff.expo,
|
| 54 |
HfHubHTTPError,
|
| 55 |
-
|
| 56 |
-
max_tries=8,
|
| 57 |
base=300,
|
| 58 |
max_value=3600,
|
| 59 |
-
|
| 60 |
-
on_backoff=lambda details: print(
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 63 |
-
"""
|
| 64 |
return api.list_repo_files(**kwargs)
|
| 65 |
|
| 66 |
-
@backoff.on_exception(
|
| 67 |
-
backoff.expo,
|
| 68 |
-
HfHubHTTPError,
|
| 69 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 70 |
-
max_tries=8,
|
| 71 |
-
base=300,
|
| 72 |
-
max_value=3600,
|
| 73 |
-
jitter=backoff.full_jitter,
|
| 74 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 75 |
-
)
|
| 76 |
-
def hf_hub_download_with_backoff(**kwargs):
|
| 77 |
-
"""Download from HF Hub with exponential backoff on rate limit errors."""
|
| 78 |
-
return hf_hub_download(**kwargs)
|
| 79 |
|
| 80 |
@backoff.on_exception(
|
| 81 |
backoff.expo,
|
| 82 |
HfHubHTTPError,
|
| 83 |
-
|
| 84 |
-
max_tries=8,
|
| 85 |
base=300,
|
| 86 |
max_value=3600,
|
| 87 |
-
jitter=backoff.full_jitter,
|
| 88 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 89 |
-
)
|
| 90 |
-
def upload_file_with_backoff(api, **kwargs):
|
| 91 |
-
"""Upload file with exponential backoff on rate limit errors."""
|
| 92 |
-
return api.upload_file(**kwargs)
|
| 93 |
-
|
| 94 |
-
@backoff.on_exception(
|
| 95 |
-
backoff.expo,
|
| 96 |
-
HfHubHTTPError,
|
| 97 |
giveup=lambda e: not is_rate_limit_error(e),
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
max_value=3600,
|
| 101 |
-
jitter=backoff.full_jitter,
|
| 102 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 103 |
-
)
|
| 104 |
-
def upload_folder_with_backoff(api, **kwargs):
|
| 105 |
-
"""Upload folder with exponential backoff on rate limit errors."""
|
| 106 |
-
return api.upload_folder(**kwargs)
|
| 107 |
-
|
| 108 |
-
# =============================================================================
|
| 109 |
-
# JSONL FILE OPERATIONS
|
| 110 |
-
# =============================================================================
|
| 111 |
-
|
| 112 |
-
def load_jsonl(filename):
|
| 113 |
-
"""Load JSONL file and return list of dictionaries."""
|
| 114 |
-
if not os.path.exists(filename):
|
| 115 |
-
return []
|
| 116 |
-
|
| 117 |
-
data = []
|
| 118 |
-
with open(filename, 'r', encoding='utf-8') as f:
|
| 119 |
-
for line in f:
|
| 120 |
-
line = line.strip()
|
| 121 |
-
if line:
|
| 122 |
-
try:
|
| 123 |
-
entry = json.loads(line)
|
| 124 |
-
data.append(entry)
|
| 125 |
-
except json.JSONDecodeError as e:
|
| 126 |
-
print(f"Warning: Skipping invalid JSON line: {e}")
|
| 127 |
-
return data
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def save_jsonl(filename, data):
|
| 131 |
-
"""Save list of dictionaries to JSONL file."""
|
| 132 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
| 133 |
-
for item in data:
|
| 134 |
-
f.write(json.dumps(item) + '\n')
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
def cache_to_dict(cache_list):
|
| 138 |
-
"""Convert list of cache entries to dictionary by identifier."""
|
| 139 |
-
return {entry['github_identifier']: entry for entry in cache_list}
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def dict_to_cache(cache_dict):
|
| 143 |
-
"""Convert dictionary back to list of values."""
|
| 144 |
-
return list(cache_dict.values())
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def normalize_date_format(date_string):
|
| 148 |
-
"""
|
| 149 |
-
Convert date strings to standardized ISO 8601 format with Z suffix.
|
| 150 |
-
Handles both old format (2025-10-15T23:23:47.983068) and new format (2025-10-15T23:23:47Z).
|
| 151 |
-
Also handles space separator (2025-06-23 07:18:28) and incomplete timezone offsets (+00).
|
| 152 |
-
"""
|
| 153 |
-
if not date_string or date_string == 'N/A':
|
| 154 |
-
return 'N/A'
|
| 155 |
-
|
| 156 |
-
try:
|
| 157 |
-
# Replace space with 'T' for ISO format compatibility
|
| 158 |
-
date_string = date_string.replace(' ', 'T')
|
| 159 |
-
|
| 160 |
-
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
|
| 161 |
-
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 162 |
-
date_string = date_string + ':00'
|
| 163 |
-
|
| 164 |
-
# Parse the date string (handles both with and without microseconds)
|
| 165 |
-
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 166 |
-
|
| 167 |
-
# Convert to standardized format
|
| 168 |
-
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"Warning: Could not parse date '{date_string}': {e}")
|
| 171 |
-
return date_string
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
# =============================================================================
|
| 175 |
-
# BIGQUERY OPERATIONS
|
| 176 |
-
# =============================================================================
|
| 177 |
-
|
| 178 |
-
def get_bigquery_client():
|
| 179 |
-
"""
|
| 180 |
-
Initialize BigQuery client using credentials from environment variable.
|
| 181 |
-
|
| 182 |
-
Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing
|
| 183 |
-
the service account JSON credentials as a string.
|
| 184 |
-
"""
|
| 185 |
-
# Get the JSON content from environment variable
|
| 186 |
-
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
|
| 187 |
-
|
| 188 |
-
if creds_json:
|
| 189 |
-
# Create a temporary file to store credentials
|
| 190 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
|
| 191 |
-
temp_file.write(creds_json)
|
| 192 |
-
temp_path = temp_file.name
|
| 193 |
-
|
| 194 |
-
# Set environment variable to point to temp file
|
| 195 |
-
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path
|
| 196 |
-
|
| 197 |
-
# Initialize BigQuery client
|
| 198 |
-
client = bigquery.Client()
|
| 199 |
-
|
| 200 |
-
# Clean up temp file
|
| 201 |
-
os.unlink(temp_path)
|
| 202 |
-
|
| 203 |
-
return client
|
| 204 |
-
else:
|
| 205 |
-
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
def generate_table_union_statements(start_date, end_date):
|
| 209 |
-
"""
|
| 210 |
-
Generate UNION ALL statements for githubarchive.month tables in date range.
|
| 211 |
-
|
| 212 |
-
Args:
|
| 213 |
-
start_date: Start datetime
|
| 214 |
-
end_date: End datetime
|
| 215 |
-
|
| 216 |
-
Returns:
|
| 217 |
-
String with UNION ALL SELECT statements for all monthly tables in range
|
| 218 |
-
"""
|
| 219 |
-
table_names = []
|
| 220 |
-
|
| 221 |
-
# Start from the beginning of start_date's month
|
| 222 |
-
current_date = start_date.replace(day=1)
|
| 223 |
-
end_month = end_date.replace(day=1)
|
| 224 |
-
|
| 225 |
-
while current_date <= end_month:
|
| 226 |
-
table_name = f"`githubarchive.month.{current_date.strftime('%Y%m')}`"
|
| 227 |
-
table_names.append(table_name)
|
| 228 |
-
|
| 229 |
-
# Move to next month
|
| 230 |
-
if current_date.month == 12:
|
| 231 |
-
current_date = current_date.replace(year=current_date.year + 1, month=1)
|
| 232 |
-
else:
|
| 233 |
-
current_date = current_date.replace(month=current_date.month + 1)
|
| 234 |
-
|
| 235 |
-
# Create UNION ALL chain
|
| 236 |
-
union_parts = [f"SELECT * FROM {table}" for table in table_names]
|
| 237 |
-
return " UNION ALL ".join(union_parts)
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
def fetch_issue_metadata_batched(client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True):
|
| 241 |
-
"""
|
| 242 |
-
Fetch issue metadata for ALL agents using BATCHED BigQuery queries.
|
| 243 |
-
|
| 244 |
-
Splits agents into smaller batches to avoid performance issues with large UNNEST arrays
|
| 245 |
-
and correlated subqueries. Each batch query runs much faster than one massive query.
|
| 246 |
-
|
| 247 |
-
Args:
|
| 248 |
-
client: BigQuery client instance
|
| 249 |
-
identifiers: List of GitHub usernames/bot identifiers
|
| 250 |
-
start_date: Start datetime (timezone-aware)
|
| 251 |
-
end_date: End datetime (timezone-aware)
|
| 252 |
-
batch_size: Number of agents per batch (default: 100)
|
| 253 |
-
upload_immediately: Upload results to HuggingFace immediately after each batch (default: True)
|
| 254 |
-
|
| 255 |
-
Returns:
|
| 256 |
-
Dictionary mapping agent identifier to list of issue metadata
|
| 257 |
-
"""
|
| 258 |
-
print(f"\n🔍 Querying BigQuery for {len(identifiers)} agents using BATCHED approach")
|
| 259 |
-
print(f" Batch size: {batch_size} agents per query")
|
| 260 |
-
print(f" Upload mode: {'Immediate (after each batch)' if upload_immediately else 'Deferred (after all batches)'}")
|
| 261 |
-
|
| 262 |
-
# Split identifiers into batches
|
| 263 |
-
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
|
| 264 |
-
print(f" Total batches: {len(batches)}")
|
| 265 |
-
|
| 266 |
-
# Collect results from all batches
|
| 267 |
-
all_metadata = {}
|
| 268 |
-
|
| 269 |
-
for batch_num, batch_identifiers in enumerate(batches, 1):
|
| 270 |
-
print(f"\n{'─'*80}")
|
| 271 |
-
print(f"📦 Processing Batch {batch_num}/{len(batches)} ({len(batch_identifiers)} agents)")
|
| 272 |
-
print(f"{'─'*80}")
|
| 273 |
-
|
| 274 |
-
try:
|
| 275 |
-
batch_results = fetch_all_issue_metadata_single_query(
|
| 276 |
-
client, batch_identifiers, start_date, end_date
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
# Merge results
|
| 280 |
-
for identifier, metadata_list in batch_results.items():
|
| 281 |
-
if identifier in all_metadata:
|
| 282 |
-
all_metadata[identifier].extend(metadata_list)
|
| 283 |
-
else:
|
| 284 |
-
all_metadata[identifier] = metadata_list
|
| 285 |
-
|
| 286 |
-
print(f" ✓ Batch {batch_num} completed: {len(batch_results)} agents with data")
|
| 287 |
-
|
| 288 |
-
# Upload immediately after this batch if enabled
|
| 289 |
-
if upload_immediately and batch_results:
|
| 290 |
-
print(f"\n 🤗 Uploading batch {batch_num}/{len(batches)} results to HuggingFace...")
|
| 291 |
-
upload_success = 0
|
| 292 |
-
upload_errors = 0
|
| 293 |
-
|
| 294 |
-
for identifier, metadata_list in batch_results.items():
|
| 295 |
-
if metadata_list:
|
| 296 |
-
if save_issue_metadata_to_hf(metadata_list, identifier):
|
| 297 |
-
upload_success += 1
|
| 298 |
-
else:
|
| 299 |
-
upload_errors += 1
|
| 300 |
-
|
| 301 |
-
print(f" ✓ Batch {batch_num}/{len(batches)} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
|
| 302 |
-
|
| 303 |
-
except Exception as e:
|
| 304 |
-
print(f" ✗ Batch {batch_num} failed: {str(e)}")
|
| 305 |
-
print(f" Continuing with remaining batches...")
|
| 306 |
-
import traceback
|
| 307 |
-
traceback.print_exc()
|
| 308 |
-
continue
|
| 309 |
-
|
| 310 |
-
print(f"\n{'='*80}")
|
| 311 |
-
print(f"✅ All batches completed!")
|
| 312 |
-
print(f" Total agents with data: {len(all_metadata)}")
|
| 313 |
-
total_issues = sum(len(issues) for issues in all_metadata.values())
|
| 314 |
-
print(f" Total issues found: {total_issues}")
|
| 315 |
-
print(f"{'='*80}\n")
|
| 316 |
-
|
| 317 |
-
return all_metadata
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
def fetch_all_issue_metadata_single_query(client, identifiers, start_date, end_date):
|
| 321 |
-
"""
|
| 322 |
-
Fetch issue metadata for a batch of agents using ONE comprehensive BigQuery query.
|
| 323 |
-
|
| 324 |
-
This query fetches IssuesEvent and IssueCommentEvent from GitHub Archive and
|
| 325 |
-
deduplicates to get the latest state of each issue. Filters by issue author,
|
| 326 |
-
commenter, or assignee.
|
| 327 |
-
|
| 328 |
-
NOTE: This function is designed for smaller batches (~100 agents). For large
|
| 329 |
-
numbers of agents, use fetch_issue_metadata_batched() instead.
|
| 330 |
-
|
| 331 |
-
Args:
|
| 332 |
-
client: BigQuery client instance
|
| 333 |
-
identifiers: List of GitHub usernames/bot identifiers (recommended: <100)
|
| 334 |
-
start_date: Start datetime (timezone-aware)
|
| 335 |
-
end_date: End datetime (timezone-aware)
|
| 336 |
-
|
| 337 |
-
Returns:
|
| 338 |
-
Dictionary mapping agent identifier to list of issue metadata:
|
| 339 |
-
{
|
| 340 |
-
'agent-identifier': [
|
| 341 |
-
{
|
| 342 |
-
'url': Issue URL,
|
| 343 |
-
'created_at': Issue creation timestamp,
|
| 344 |
-
'closed_at': Close timestamp (if closed, else None),
|
| 345 |
-
'state_reason': Reason for closure (completed/not_planned/etc.)
|
| 346 |
-
},
|
| 347 |
-
...
|
| 348 |
-
],
|
| 349 |
-
...
|
| 350 |
-
}
|
| 351 |
-
"""
|
| 352 |
-
print(f"\n🔍 Querying BigQuery for {len(identifiers)} agents in SINGLE QUERY")
|
| 353 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 354 |
-
|
| 355 |
-
# Generate table UNION statements for issue events
|
| 356 |
-
issue_tables = generate_table_union_statements(start_date, end_date)
|
| 357 |
-
|
| 358 |
-
# Build identifier list for IN clause (handle both bot and non-bot versions)
|
| 359 |
-
identifier_set = set()
|
| 360 |
-
for id in identifiers:
|
| 361 |
-
identifier_set.add(id)
|
| 362 |
-
# Also add stripped version without [bot] suffix
|
| 363 |
-
stripped = id.replace('[bot]', '')
|
| 364 |
-
if stripped != id:
|
| 365 |
-
identifier_set.add(stripped)
|
| 366 |
-
|
| 367 |
-
# Create array format for UNNEST (avoids 256KB query size limit)
|
| 368 |
-
identifier_array = '[' + ', '.join([f'"{id}"' for id in identifier_set]) + ']'
|
| 369 |
-
|
| 370 |
-
print(f" Total identifiers (including bot/non-bot variants): {len(identifier_set)}")
|
| 371 |
-
|
| 372 |
-
# Build comprehensive query with CTEs
|
| 373 |
-
query = f"""
|
| 374 |
-
WITH agent_identifiers AS (
|
| 375 |
-
-- Create a table of all agent identifiers using UNNEST
|
| 376 |
-
-- This avoids hitting BigQuery's 256KB query size limit with large IN clauses
|
| 377 |
-
SELECT identifier
|
| 378 |
-
FROM UNNEST({identifier_array}) AS identifier
|
| 379 |
-
),
|
| 380 |
-
|
| 381 |
-
issue_events AS (
|
| 382 |
-
-- Get all issue events and comment events for ALL agents
|
| 383 |
-
SELECT
|
| 384 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') as url,
|
| 385 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.created_at') as created_at,
|
| 386 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.closed_at') as closed_at,
|
| 387 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.state_reason') as state_reason,
|
| 388 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.user.login') as author,
|
| 389 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.assignee.login') as assignee,
|
| 390 |
-
JSON_EXTRACT_SCALAR(payload, '$.comment.user.login') as commenter,
|
| 391 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.number') as issue_number,
|
| 392 |
-
repo.name as repo_name,
|
| 393 |
-
created_at as event_time
|
| 394 |
-
FROM (
|
| 395 |
-
{issue_tables}
|
| 396 |
-
)
|
| 397 |
-
WHERE
|
| 398 |
-
type IN ('IssuesEvent', 'IssueCommentEvent')
|
| 399 |
-
-- Exclude pull requests (they have pull_request field)
|
| 400 |
-
AND JSON_EXTRACT(payload, '$.issue.pull_request') IS NULL
|
| 401 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') IS NOT NULL
|
| 402 |
-
-- Filter by author OR commenter OR assignee
|
| 403 |
-
AND (
|
| 404 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.user.login') IN (SELECT identifier FROM agent_identifiers)
|
| 405 |
-
OR JSON_EXTRACT_SCALAR(payload, '$.comment.user.login') IN (SELECT identifier FROM agent_identifiers)
|
| 406 |
-
OR JSON_EXTRACT_SCALAR(payload, '$.issue.assignee.login') IN (SELECT identifier FROM agent_identifiers)
|
| 407 |
-
)
|
| 408 |
-
),
|
| 409 |
-
|
| 410 |
-
latest_states AS (
|
| 411 |
-
-- Deduplicate to get latest state for each issue
|
| 412 |
-
SELECT
|
| 413 |
-
url,
|
| 414 |
-
created_at,
|
| 415 |
-
closed_at,
|
| 416 |
-
state_reason,
|
| 417 |
-
author,
|
| 418 |
-
assignee,
|
| 419 |
-
commenter
|
| 420 |
-
FROM issue_events
|
| 421 |
-
QUALIFY ROW_NUMBER() OVER (
|
| 422 |
-
PARTITION BY repo_name, issue_number
|
| 423 |
-
ORDER BY event_time DESC
|
| 424 |
-
) = 1
|
| 425 |
-
),
|
| 426 |
-
|
| 427 |
-
agent_issues AS (
|
| 428 |
-
-- Map each issue to its relevant agent(s)
|
| 429 |
-
SELECT DISTINCT
|
| 430 |
-
CASE
|
| 431 |
-
WHEN author IN (SELECT identifier FROM agent_identifiers) THEN author
|
| 432 |
-
WHEN commenter IN (SELECT identifier FROM agent_identifiers) THEN commenter
|
| 433 |
-
WHEN assignee IN (SELECT identifier FROM agent_identifiers) THEN assignee
|
| 434 |
-
ELSE NULL
|
| 435 |
-
END as agent_identifier,
|
| 436 |
-
url,
|
| 437 |
-
created_at,
|
| 438 |
-
closed_at,
|
| 439 |
-
state_reason
|
| 440 |
-
FROM latest_states
|
| 441 |
-
WHERE
|
| 442 |
-
author IN (SELECT identifier FROM agent_identifiers)
|
| 443 |
-
OR commenter IN (SELECT identifier FROM agent_identifiers)
|
| 444 |
-
OR assignee IN (SELECT identifier FROM agent_identifiers)
|
| 445 |
)
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
created_at,
|
| 451 |
-
closed_at,
|
| 452 |
-
state_reason
|
| 453 |
-
FROM agent_issues
|
| 454 |
-
WHERE agent_identifier IS NOT NULL
|
| 455 |
-
ORDER BY agent_identifier, created_at DESC
|
| 456 |
-
"""
|
| 457 |
-
|
| 458 |
-
# Calculate number of days for reporting
|
| 459 |
-
query_days = (end_date - start_date).days
|
| 460 |
-
|
| 461 |
-
print(f" Querying {query_days} days for issue and comment events...")
|
| 462 |
-
print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
|
| 463 |
-
|
| 464 |
-
try:
|
| 465 |
-
query_job = client.query(query)
|
| 466 |
-
results = list(query_job.result())
|
| 467 |
-
|
| 468 |
-
print(f" ✓ Found {len(results)} total issue records across all agents")
|
| 469 |
-
|
| 470 |
-
# Group results by agent
|
| 471 |
-
metadata_by_agent = defaultdict(list)
|
| 472 |
-
|
| 473 |
-
for row in results:
|
| 474 |
-
agent_id = row.agent_identifier
|
| 475 |
-
|
| 476 |
-
# Convert datetime objects to ISO strings
|
| 477 |
-
created_at = row.created_at
|
| 478 |
-
if hasattr(created_at, 'isoformat'):
|
| 479 |
-
created_at = created_at.isoformat()
|
| 480 |
-
|
| 481 |
-
closed_at = row.closed_at
|
| 482 |
-
if hasattr(closed_at, 'isoformat'):
|
| 483 |
-
closed_at = closed_at.isoformat()
|
| 484 |
-
|
| 485 |
-
metadata_by_agent[agent_id].append({
|
| 486 |
-
'url': row.url,
|
| 487 |
-
'created_at': created_at,
|
| 488 |
-
'closed_at': closed_at,
|
| 489 |
-
'state_reason': row.state_reason,
|
| 490 |
-
})
|
| 491 |
-
|
| 492 |
-
# Print breakdown by agent
|
| 493 |
-
print(f"\n 📊 Results breakdown by agent:")
|
| 494 |
-
for identifier in identifiers:
|
| 495 |
-
# Check both original and stripped versions
|
| 496 |
-
count = len(metadata_by_agent.get(identifier, []))
|
| 497 |
-
stripped = identifier.replace('[bot]', '')
|
| 498 |
-
if stripped != identifier:
|
| 499 |
-
count += len(metadata_by_agent.get(stripped, []))
|
| 500 |
-
|
| 501 |
-
if count > 0:
|
| 502 |
-
# Merge both versions if needed
|
| 503 |
-
all_metadata = metadata_by_agent.get(identifier, []) + metadata_by_agent.get(stripped, [])
|
| 504 |
-
completed_count = sum(1 for m in all_metadata if m['state_reason'] == 'completed')
|
| 505 |
-
closed_count = sum(1 for m in all_metadata if m['closed_at'] is not None)
|
| 506 |
-
open_count = count - closed_count
|
| 507 |
-
print(f" {identifier}: {count} issues ({completed_count} completed, {closed_count} closed, {open_count} open)")
|
| 508 |
-
|
| 509 |
-
# Convert defaultdict to regular dict and merge bot/non-bot versions
|
| 510 |
-
final_metadata = {}
|
| 511 |
-
for identifier in identifiers:
|
| 512 |
-
combined = metadata_by_agent.get(identifier, [])
|
| 513 |
-
stripped = identifier.replace('[bot]', '')
|
| 514 |
-
if stripped != identifier and stripped in metadata_by_agent:
|
| 515 |
-
combined.extend(metadata_by_agent[stripped])
|
| 516 |
-
|
| 517 |
-
if combined:
|
| 518 |
-
final_metadata[identifier] = combined
|
| 519 |
-
|
| 520 |
-
return final_metadata
|
| 521 |
-
|
| 522 |
-
except Exception as e:
|
| 523 |
-
print(f" ✗ BigQuery error: {str(e)}")
|
| 524 |
-
import traceback
|
| 525 |
-
traceback.print_exc()
|
| 526 |
-
return {}
|
| 527 |
|
| 528 |
|
| 529 |
# =============================================================================
|
| 530 |
-
# GITHUB
|
| 531 |
# =============================================================================
|
| 532 |
|
| 533 |
-
def get_github_token():
|
| 534 |
-
"""Get GitHub token from environment variables for validation purposes."""
|
| 535 |
-
token = os.getenv('GITHUB_TOKEN')
|
| 536 |
-
if not token:
|
| 537 |
-
print("Warning: GITHUB_TOKEN not found for validation")
|
| 538 |
-
return token
|
| 539 |
-
|
| 540 |
-
|
| 541 |
def validate_github_username(identifier):
|
| 542 |
-
"""Verify that a GitHub identifier exists
|
| 543 |
try:
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
url = f'https://api.github.com/users/{identifier}'
|
| 547 |
-
response = requests.get(url, headers=headers, timeout=10)
|
| 548 |
-
|
| 549 |
-
if response.status_code == 200:
|
| 550 |
-
return True, "Username is valid"
|
| 551 |
-
elif response.status_code == 404:
|
| 552 |
-
return False, "GitHub identifier not found"
|
| 553 |
-
else:
|
| 554 |
-
return False, f"Validation error: HTTP {response.status_code}"
|
| 555 |
except Exception as e:
|
| 556 |
return False, f"Validation error: {str(e)}"
|
| 557 |
|
| 558 |
|
| 559 |
-
# =============================================================================
|
| 560 |
-
# ISSUE METADATA OPERATIONS
|
| 561 |
-
# =============================================================================
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
def extract_issue_metadata(issue):
|
| 565 |
-
"""
|
| 566 |
-
Extract minimal issue metadata for efficient storage.
|
| 567 |
-
Only keeps essential fields: url, created_at, closed_at, state_reason.
|
| 568 |
-
Note: agent_name is not stored as it's inferred from the folder structure.
|
| 569 |
-
|
| 570 |
-
Issue states:
|
| 571 |
-
- state: "open" or "closed"
|
| 572 |
-
- state_reason: "completed" (resolved), "not_planned" (closed as not planned), or None (still open)
|
| 573 |
-
"""
|
| 574 |
-
# Extract dates and state
|
| 575 |
-
created_at = issue.get('created_at')
|
| 576 |
-
closed_at = issue.get('closed_at')
|
| 577 |
-
state = issue.get('state')
|
| 578 |
-
state_reason = issue.get('state_reason')
|
| 579 |
-
|
| 580 |
-
return {
|
| 581 |
-
'url': issue.get('url'),
|
| 582 |
-
'created_at': created_at,
|
| 583 |
-
'closed_at': closed_at,
|
| 584 |
-
'state': state,
|
| 585 |
-
'state_reason': state_reason
|
| 586 |
-
}
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
def calculate_issue_stats_from_metadata(metadata_list):
|
| 592 |
-
"""
|
| 593 |
-
Calculate statistics from a list of issue metadata (lightweight objects).
|
| 594 |
-
Works with minimal metadata: url, created_at, closed_at, state, state_reason.
|
| 595 |
-
|
| 596 |
-
Returns a dictionary with comprehensive issue metrics.
|
| 597 |
-
|
| 598 |
-
Resolved Rate is calculated as:
|
| 599 |
-
completed issues / closed issues * 100
|
| 600 |
-
|
| 601 |
-
Completed Issues = issues closed as completed (state_reason="completed")
|
| 602 |
-
Closed Issues = all issues that have been closed (closed_at is not None)
|
| 603 |
-
We do NOT count issues closed as not planned (state_reason="not_planned") as resolved,
|
| 604 |
-
but they ARE counted in the denominator as closed issues.
|
| 605 |
-
"""
|
| 606 |
-
total_issues = len(metadata_list)
|
| 607 |
-
|
| 608 |
-
# Count closed issues (those with closed_at timestamp)
|
| 609 |
-
closed_issues = sum(1 for issue_meta in metadata_list
|
| 610 |
-
if issue_meta.get('closed_at') is not None)
|
| 611 |
-
|
| 612 |
-
# Count completed issues (subset of closed issues with state_reason="completed")
|
| 613 |
-
completed = sum(1 for issue_meta in metadata_list
|
| 614 |
-
if issue_meta.get('state_reason') == 'completed')
|
| 615 |
-
|
| 616 |
-
# Calculate resolved rate as: completed / closed (not completed / total)
|
| 617 |
-
resolved_rate = (completed / closed_issues * 100) if closed_issues > 0 else 0
|
| 618 |
-
|
| 619 |
-
return {
|
| 620 |
-
'total_issues': total_issues,
|
| 621 |
-
'closed_issues': closed_issues,
|
| 622 |
-
'resolved_issues': completed,
|
| 623 |
-
'resolved_rate': round(resolved_rate, 2),
|
| 624 |
-
}
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
def calculate_monthly_metrics_by_agent(top_n=None):
|
| 628 |
-
"""
|
| 629 |
-
Calculate monthly metrics for all agents (or top N agents) for visualization.
|
| 630 |
-
Loads data directly from SWE-Arena/issue_metadata dataset.
|
| 631 |
-
|
| 632 |
-
Args:
|
| 633 |
-
top_n: If specified, only return metrics for the top N agents by total issues.
|
| 634 |
-
Agents are ranked by their total issue count across all months.
|
| 635 |
-
|
| 636 |
-
Returns:
|
| 637 |
-
dict: {
|
| 638 |
-
'agents': list of agent names,
|
| 639 |
-
'months': list of month labels (e.g., '2025-01'),
|
| 640 |
-
'data': {
|
| 641 |
-
agent_name: {
|
| 642 |
-
'resolved_rates': list of resolved rates by month,
|
| 643 |
-
'total_issues': list of issue counts by month,
|
| 644 |
-
'resolved_issues': list of resolved issue counts by month
|
| 645 |
-
}
|
| 646 |
-
}
|
| 647 |
-
}
|
| 648 |
-
"""
|
| 649 |
-
# Load ALL agents from HuggingFace agents repo
|
| 650 |
-
agents = load_agents_from_hf()
|
| 651 |
-
|
| 652 |
-
# Create mapping from agent_identifier to agent_name
|
| 653 |
-
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 654 |
-
|
| 655 |
-
# Load all issue metadata from issue_metadata dataset
|
| 656 |
-
all_metadata = load_issue_metadata()
|
| 657 |
-
|
| 658 |
-
if not all_metadata:
|
| 659 |
-
return {'agents': [], 'months': [], 'data': {}}
|
| 660 |
-
|
| 661 |
-
# Group by agent and month
|
| 662 |
-
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 663 |
-
|
| 664 |
-
for issue_meta in all_metadata:
|
| 665 |
-
agent_identifier = issue_meta.get('agent_identifier')
|
| 666 |
-
created_at = issue_meta.get('created_at')
|
| 667 |
-
|
| 668 |
-
if not agent_identifier or not created_at:
|
| 669 |
-
continue
|
| 670 |
-
|
| 671 |
-
# Get agent_name from identifier
|
| 672 |
-
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 673 |
-
|
| 674 |
-
try:
|
| 675 |
-
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 676 |
-
month_key = f"{dt.year}-{dt.month:02d}"
|
| 677 |
-
agent_month_data[agent_name][month_key].append(issue_meta)
|
| 678 |
-
except Exception as e:
|
| 679 |
-
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 680 |
-
continue
|
| 681 |
-
|
| 682 |
-
# Get all unique months and sort them
|
| 683 |
-
all_months = set()
|
| 684 |
-
for agent_data in agent_month_data.values():
|
| 685 |
-
all_months.update(agent_data.keys())
|
| 686 |
-
months = sorted(list(all_months))
|
| 687 |
-
|
| 688 |
-
# Calculate metrics for each agent and month
|
| 689 |
-
result_data = {}
|
| 690 |
-
for agent_name, month_dict in agent_month_data.items():
|
| 691 |
-
resolved_rates = []
|
| 692 |
-
total_issues_list = []
|
| 693 |
-
resolved_issues_list = []
|
| 694 |
-
|
| 695 |
-
for month in months:
|
| 696 |
-
issues_in_month = month_dict.get(month, [])
|
| 697 |
-
|
| 698 |
-
# Count completed issues (those with state_reason="completed")
|
| 699 |
-
completed_count = sum(1 for issue in issues_in_month if issue.get('state_reason') == 'completed')
|
| 700 |
-
|
| 701 |
-
# Count closed issues (those with closed_at timestamp)
|
| 702 |
-
closed_count = sum(1 for issue in issues_in_month if issue.get('closed_at') is not None)
|
| 703 |
-
|
| 704 |
-
# Total issues created in this month
|
| 705 |
-
total_count = len(issues_in_month)
|
| 706 |
-
|
| 707 |
-
# Calculate resolved rate as: completed / closed (not completed / total)
|
| 708 |
-
resolved_rate = (completed_count / closed_count * 100) if closed_count > 0 else None
|
| 709 |
-
|
| 710 |
-
resolved_rates.append(resolved_rate)
|
| 711 |
-
total_issues_list.append(total_count)
|
| 712 |
-
resolved_issues_list.append(completed_count)
|
| 713 |
-
|
| 714 |
-
result_data[agent_name] = {
|
| 715 |
-
'resolved_rates': resolved_rates,
|
| 716 |
-
'total_issues': total_issues_list,
|
| 717 |
-
'resolved_issues': resolved_issues_list
|
| 718 |
-
}
|
| 719 |
-
|
| 720 |
-
# Filter to top N agents if specified
|
| 721 |
-
agents_list = sorted(list(agent_month_data.keys()))
|
| 722 |
-
if top_n is not None and top_n > 0:
|
| 723 |
-
# Calculate total issues for each agent across all months
|
| 724 |
-
agent_totals = []
|
| 725 |
-
for agent_name in agents_list:
|
| 726 |
-
total_issues = sum(result_data[agent_name]['total_issues'])
|
| 727 |
-
agent_totals.append((agent_name, total_issues))
|
| 728 |
-
|
| 729 |
-
# Sort by total issues (descending) and take top N
|
| 730 |
-
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 731 |
-
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 732 |
-
|
| 733 |
-
# Filter result_data to only include top agents
|
| 734 |
-
result_data = {agent: result_data[agent] for agent in top_agents if agent in result_data}
|
| 735 |
-
agents_list = top_agents
|
| 736 |
-
|
| 737 |
-
return {
|
| 738 |
-
'agents': agents_list,
|
| 739 |
-
'months': months,
|
| 740 |
-
'data': result_data
|
| 741 |
-
}
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
# =============================================================================
|
| 745 |
-
# ISSUE METADATA STORAGE & RETRIEVAL
|
| 746 |
-
# =============================================================================
|
| 747 |
-
|
| 748 |
-
def group_metadata_by_date(metadata_list):
|
| 749 |
-
"""
|
| 750 |
-
Group issue metadata by exact date (year.month.day) for efficient daily storage.
|
| 751 |
-
Returns dict: {(year, month, day): [metadata_list]}
|
| 752 |
-
"""
|
| 753 |
-
grouped = defaultdict(list)
|
| 754 |
-
|
| 755 |
-
for issue_meta in metadata_list:
|
| 756 |
-
created_at = issue_meta.get('created_at')
|
| 757 |
-
if not created_at:
|
| 758 |
-
continue
|
| 759 |
-
|
| 760 |
-
try:
|
| 761 |
-
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 762 |
-
key = (dt.year, dt.month, dt.day)
|
| 763 |
-
grouped[key].append(issue_meta)
|
| 764 |
-
except Exception as e:
|
| 765 |
-
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 766 |
-
|
| 767 |
-
return dict(grouped)
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
def save_issue_metadata_to_hf(metadata_list, agent_identifier):
|
| 771 |
-
"""
|
| 772 |
-
Save issue metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 773 |
-
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's issues.
|
| 774 |
-
|
| 775 |
-
This function uses COMPLETE OVERWRITE strategy (not append/deduplicate).
|
| 776 |
-
Uses upload_folder for single-commit batch uploads (avoids rate limit issues).
|
| 777 |
-
|
| 778 |
-
Args:
|
| 779 |
-
metadata_list: List of issue metadata dictionaries
|
| 780 |
-
agent_identifier: GitHub identifier of the agent (used as folder name)
|
| 781 |
-
"""
|
| 782 |
-
import tempfile
|
| 783 |
-
import shutil
|
| 784 |
-
|
| 785 |
-
temp_dir = None
|
| 786 |
-
try:
|
| 787 |
-
token = get_hf_token()
|
| 788 |
-
if not token:
|
| 789 |
-
raise Exception("No HuggingFace token found")
|
| 790 |
-
|
| 791 |
-
api = HfApi(token=token)
|
| 792 |
-
|
| 793 |
-
# Group by exact date (year, month, day)
|
| 794 |
-
grouped = group_metadata_by_date(metadata_list)
|
| 795 |
-
|
| 796 |
-
if not grouped:
|
| 797 |
-
print(f" No valid metadata to save for {agent_identifier}")
|
| 798 |
-
return False
|
| 799 |
-
|
| 800 |
-
# Create temporary directory for batch upload
|
| 801 |
-
temp_dir = tempfile.mkdtemp()
|
| 802 |
-
agent_folder = os.path.join(temp_dir, agent_identifier)
|
| 803 |
-
os.makedirs(agent_folder, exist_ok=True)
|
| 804 |
-
|
| 805 |
-
print(f"📦 Preparing batch upload for {agent_identifier} ({len(grouped)} daily files)...")
|
| 806 |
-
|
| 807 |
-
# Process each daily file
|
| 808 |
-
for (issue_year, month, day), day_metadata in grouped.items():
|
| 809 |
-
filename = f"{agent_identifier}/{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 810 |
-
local_filename = os.path.join(agent_folder, f"{issue_year}.{month:02d}.{day:02d}.jsonl")
|
| 811 |
-
|
| 812 |
-
# Sort by created_at for better organization
|
| 813 |
-
day_metadata.sort(key=lambda x: x.get('created_at', ''), reverse=True)
|
| 814 |
-
|
| 815 |
-
# Save to temp directory (complete overwrite, no merging)
|
| 816 |
-
save_jsonl(local_filename, day_metadata)
|
| 817 |
-
print(f" Prepared {len(day_metadata)} issues for {filename}")
|
| 818 |
-
|
| 819 |
-
# Upload entire folder using upload_folder (single commit per agent)
|
| 820 |
-
print(f"🤗 Uploading {len(grouped)} files ({len(metadata_list)} total issues)...")
|
| 821 |
-
upload_folder_with_backoff(
|
| 822 |
-
api,
|
| 823 |
-
folder_path=temp_dir,
|
| 824 |
-
repo_id=ISSUE_METADATA_REPO,
|
| 825 |
-
repo_type="dataset",
|
| 826 |
-
commit_message=f"Update issue metadata for {agent_identifier} - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 827 |
-
)
|
| 828 |
-
print(f" ✓ Batch upload complete for {agent_identifier}")
|
| 829 |
-
|
| 830 |
-
return True
|
| 831 |
-
|
| 832 |
-
except Exception as e:
|
| 833 |
-
print(f"✗ Error saving issue metadata: {str(e)}")
|
| 834 |
-
return False
|
| 835 |
-
finally:
|
| 836 |
-
# Always clean up temporary directory
|
| 837 |
-
if temp_dir and os.path.exists(temp_dir):
|
| 838 |
-
shutil.rmtree(temp_dir)
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
def load_issue_metadata():
|
| 842 |
-
"""
|
| 843 |
-
Load issue metadata from the last LEADERBOARD_TIME_FRAME_DAYS only.
|
| 844 |
-
|
| 845 |
-
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 846 |
-
|
| 847 |
-
Returns:
|
| 848 |
-
List of dictionaries with 'agent_identifier' added to each issue metadata.
|
| 849 |
-
Only includes issues within the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 850 |
-
"""
|
| 851 |
-
# Calculate cutoff date based on LEADERBOARD_TIME_FRAME_DAYS
|
| 852 |
-
current_time = datetime.now(timezone.utc)
|
| 853 |
-
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 854 |
-
|
| 855 |
-
try:
|
| 856 |
-
api = HfApi()
|
| 857 |
-
token = get_hf_token()
|
| 858 |
-
|
| 859 |
-
# List all files in the repository
|
| 860 |
-
files = list_repo_files_with_backoff(api, repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 861 |
-
|
| 862 |
-
# Filter for files within the time frame: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 863 |
-
# Parse date from filename and only include files within LEADERBOARD_TIME_FRAME_DAYS
|
| 864 |
-
time_frame_files = []
|
| 865 |
-
for f in files:
|
| 866 |
-
if f.endswith('.jsonl'):
|
| 867 |
-
parts = f.split('/')
|
| 868 |
-
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
|
| 869 |
-
filename = parts[1]
|
| 870 |
-
try:
|
| 871 |
-
# Extract date from filename: YYYY.MM.DD.jsonl
|
| 872 |
-
date_part = filename.replace('.jsonl', '') # Get YYYY.MM.DD
|
| 873 |
-
date_components = date_part.split('.')
|
| 874 |
-
if len(date_components) == 3:
|
| 875 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 876 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 877 |
-
|
| 878 |
-
# Only include files within the time frame
|
| 879 |
-
if file_date >= cutoff_date:
|
| 880 |
-
time_frame_files.append(f)
|
| 881 |
-
except Exception:
|
| 882 |
-
# Skip files with unparseable dates
|
| 883 |
-
continue
|
| 884 |
-
|
| 885 |
-
print(f"📥 [LOAD] Reading cached issue metadata from HuggingFace ({len(time_frame_files)} files, last {LEADERBOARD_TIME_FRAME_DAYS} days)...")
|
| 886 |
-
|
| 887 |
-
all_metadata = []
|
| 888 |
-
for filename in time_frame_files:
|
| 889 |
-
try:
|
| 890 |
-
# Extract agent_identifier from path (first part)
|
| 891 |
-
# Format: agent_identifier/YYYY.MM.DD.jsonl
|
| 892 |
-
parts = filename.split('/')
|
| 893 |
-
if len(parts) != 2:
|
| 894 |
-
print(f" Warning: Unexpected filename format: {filename}")
|
| 895 |
-
continue
|
| 896 |
-
|
| 897 |
-
agent_identifier = parts[0]
|
| 898 |
-
|
| 899 |
-
file_path = hf_hub_download_with_backoff(
|
| 900 |
-
repo_id=ISSUE_METADATA_REPO,
|
| 901 |
-
filename=filename,
|
| 902 |
-
repo_type="dataset",
|
| 903 |
-
token=token
|
| 904 |
-
)
|
| 905 |
-
day_metadata = load_jsonl(file_path)
|
| 906 |
-
|
| 907 |
-
# Add agent_identifier and filter by date as a double-check
|
| 908 |
-
for issue_meta in day_metadata:
|
| 909 |
-
# Validate issue date against cutoff
|
| 910 |
-
created_at = issue_meta.get('created_at')
|
| 911 |
-
if created_at:
|
| 912 |
-
try:
|
| 913 |
-
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 914 |
-
if dt < cutoff_date:
|
| 915 |
-
continue # Skip issues outside time frame
|
| 916 |
-
except Exception:
|
| 917 |
-
pass # Keep issues with unparseable dates
|
| 918 |
-
|
| 919 |
-
issue_meta['agent_identifier'] = agent_identifier
|
| 920 |
-
all_metadata.append(issue_meta)
|
| 921 |
-
|
| 922 |
-
print(f" ✓ Loaded {len(day_metadata)} issues from {filename}")
|
| 923 |
-
except Exception as e:
|
| 924 |
-
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 925 |
-
|
| 926 |
-
print(f"✓ Loaded {len(all_metadata)} total issues from last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 927 |
-
return all_metadata
|
| 928 |
-
|
| 929 |
-
except Exception as e:
|
| 930 |
-
print(f"✗ Error loading issue metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days: {str(e)}")
|
| 931 |
-
return []
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
def get_latest_issue_date_for_agent(agent_identifier):
|
| 935 |
-
"""
|
| 936 |
-
Get the latest issue creation date for an agent from stored metadata.
|
| 937 |
-
Used for incremental updates - only fetch issues newer than this date.
|
| 938 |
-
|
| 939 |
-
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 940 |
-
|
| 941 |
-
Args:
|
| 942 |
-
agent_identifier: GitHub identifier of the agent
|
| 943 |
-
|
| 944 |
-
Returns:
|
| 945 |
-
datetime or None if no existing issues found.
|
| 946 |
-
"""
|
| 947 |
-
try:
|
| 948 |
-
api = HfApi()
|
| 949 |
-
token = get_hf_token()
|
| 950 |
-
|
| 951 |
-
# List all files in the repository
|
| 952 |
-
files = list_repo_files_with_backoff(api, repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 953 |
-
|
| 954 |
-
# Filter for files in this agent's folder
|
| 955 |
-
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 956 |
-
agent_pattern = f"{agent_identifier}/"
|
| 957 |
-
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 958 |
-
|
| 959 |
-
if not agent_files:
|
| 960 |
-
return None
|
| 961 |
-
|
| 962 |
-
# Find latest created_at across all files
|
| 963 |
-
latest_date = None
|
| 964 |
-
for filename in agent_files:
|
| 965 |
-
try:
|
| 966 |
-
file_path = hf_hub_download_with_backoff(
|
| 967 |
-
repo_id=ISSUE_METADATA_REPO,
|
| 968 |
-
filename=filename,
|
| 969 |
-
repo_type="dataset",
|
| 970 |
-
token=token
|
| 971 |
-
)
|
| 972 |
-
metadata = load_jsonl(file_path)
|
| 973 |
-
|
| 974 |
-
for issue in metadata:
|
| 975 |
-
created_at = issue.get('created_at')
|
| 976 |
-
if created_at:
|
| 977 |
-
try:
|
| 978 |
-
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 979 |
-
if latest_date is None or dt > latest_date:
|
| 980 |
-
latest_date = dt
|
| 981 |
-
except Exception:
|
| 982 |
-
continue
|
| 983 |
-
except Exception:
|
| 984 |
-
continue
|
| 985 |
-
|
| 986 |
-
return latest_date
|
| 987 |
-
|
| 988 |
-
except Exception:
|
| 989 |
-
return None
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
def get_daily_files_last_time_frame(agent_identifier):
|
| 993 |
-
"""
|
| 994 |
-
Get list of daily file paths for an agent from the configured time frame.
|
| 995 |
-
|
| 996 |
-
Args:
|
| 997 |
-
agent_identifier: GitHub identifier of the agent
|
| 998 |
-
|
| 999 |
-
Returns:
|
| 1000 |
-
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 1001 |
-
"""
|
| 1002 |
-
try:
|
| 1003 |
-
api = HfApi()
|
| 1004 |
-
token = get_hf_token()
|
| 1005 |
-
|
| 1006 |
-
# Calculate date range using configured time frame
|
| 1007 |
-
today = datetime.now(timezone.utc)
|
| 1008 |
-
cutoff_date = today - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1009 |
-
|
| 1010 |
-
# List all files in the repository
|
| 1011 |
-
files = list_repo_files_with_backoff(api, repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 1012 |
-
|
| 1013 |
-
# Filter for files in this agent's folder
|
| 1014 |
-
agent_pattern = f"{agent_identifier}/"
|
| 1015 |
-
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 1016 |
-
|
| 1017 |
-
# Filter by date range (extract date from filename)
|
| 1018 |
-
recent_files = []
|
| 1019 |
-
for filename in agent_files:
|
| 1020 |
-
try:
|
| 1021 |
-
# Extract date from filename: YYYY.MM.DD.jsonl
|
| 1022 |
-
parts = filename.split('/')
|
| 1023 |
-
if len(parts) != 2:
|
| 1024 |
-
continue
|
| 1025 |
-
|
| 1026 |
-
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
|
| 1027 |
-
date_components = date_part.split('.')
|
| 1028 |
-
if len(date_components) != 3:
|
| 1029 |
-
continue
|
| 1030 |
-
|
| 1031 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 1032 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 1033 |
-
|
| 1034 |
-
# Include if within configured time frame
|
| 1035 |
-
if cutoff_date <= file_date <= today:
|
| 1036 |
-
recent_files.append(filename)
|
| 1037 |
-
except Exception:
|
| 1038 |
-
continue
|
| 1039 |
-
|
| 1040 |
-
return recent_files
|
| 1041 |
-
|
| 1042 |
-
except Exception as e:
|
| 1043 |
-
print(f"Error getting daily files: {str(e)}")
|
| 1044 |
-
return []
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
# =============================================================================
|
| 1048 |
# HUGGINGFACE DATASET OPERATIONS
|
| 1049 |
# =============================================================================
|
|
@@ -1055,7 +101,7 @@ def load_agents_from_hf():
|
|
| 1055 |
agents = []
|
| 1056 |
|
| 1057 |
# List all files in the repository
|
| 1058 |
-
files = list_repo_files_with_backoff(api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 1059 |
|
| 1060 |
# Filter for JSON files only
|
| 1061 |
json_files = [f for f in files if f.endswith('.json')]
|
|
@@ -1082,19 +128,13 @@ def load_agents_from_hf():
|
|
| 1082 |
# Add or override github_identifier to match filename
|
| 1083 |
agent_data['github_identifier'] = filename_identifier
|
| 1084 |
|
| 1085 |
-
# Normalize name field: use 'name' if exists, otherwise use identifier
|
| 1086 |
-
if 'name' in agent_data:
|
| 1087 |
-
agent_data['name'] = agent_data['name']
|
| 1088 |
-
elif 'name' not in agent_data:
|
| 1089 |
-
agent_data['name'] = filename_identifier
|
| 1090 |
-
|
| 1091 |
agents.append(agent_data)
|
| 1092 |
|
| 1093 |
except Exception as e:
|
| 1094 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 1095 |
continue
|
| 1096 |
|
| 1097 |
-
print(f"
|
| 1098 |
return agents
|
| 1099 |
|
| 1100 |
except Exception as e:
|
|
@@ -1102,8 +142,6 @@ def load_agents_from_hf():
|
|
| 1102 |
return None
|
| 1103 |
|
| 1104 |
|
| 1105 |
-
|
| 1106 |
-
|
| 1107 |
def get_hf_token():
|
| 1108 |
"""Get HuggingFace token from environment variables."""
|
| 1109 |
token = os.getenv('HF_TOKEN')
|
|
@@ -1112,48 +150,6 @@ def get_hf_token():
|
|
| 1112 |
return token
|
| 1113 |
|
| 1114 |
|
| 1115 |
-
def load_cached_leaderboard_and_metrics():
|
| 1116 |
-
"""
|
| 1117 |
-
Load cached leaderboard and monthly metrics data from HuggingFace.
|
| 1118 |
-
This is much faster than constructing from scratch on every app launch.
|
| 1119 |
-
|
| 1120 |
-
Returns:
|
| 1121 |
-
dict: {
|
| 1122 |
-
'leaderboard': dict of agent stats,
|
| 1123 |
-
'monthly_metrics': dict with agents, months, and data,
|
| 1124 |
-
'metadata': dict with last_updated, time_frame_days, total_agents
|
| 1125 |
-
}
|
| 1126 |
-
Returns None if cache doesn't exist or fails to load.
|
| 1127 |
-
"""
|
| 1128 |
-
try:
|
| 1129 |
-
token = get_hf_token()
|
| 1130 |
-
|
| 1131 |
-
print("📥 Loading cached leaderboard and metrics from HuggingFace...")
|
| 1132 |
-
|
| 1133 |
-
# Download cached file
|
| 1134 |
-
cached_path = hf_hub_download_with_backoff(
|
| 1135 |
-
repo_id=LEADERBOARD_REPO,
|
| 1136 |
-
filename="swe-issue.json",
|
| 1137 |
-
repo_type="dataset",
|
| 1138 |
-
token=token
|
| 1139 |
-
)
|
| 1140 |
-
|
| 1141 |
-
# Load JSON data
|
| 1142 |
-
with open(cached_path, 'r', encoding='utf-8') as f:
|
| 1143 |
-
data = json.load(f)
|
| 1144 |
-
|
| 1145 |
-
print(f" ✓ Loaded cached data (last updated: {data.get('metadata', {}).get('last_updated', 'Unknown')})")
|
| 1146 |
-
print(f" ✓ Leaderboard entries: {len(data.get('leaderboard', {}))}")
|
| 1147 |
-
print(f" ✓ Monthly metrics for: {len(data.get('monthly_metrics', {}).get('agents', []))} agents")
|
| 1148 |
-
|
| 1149 |
-
return data
|
| 1150 |
-
|
| 1151 |
-
except Exception as e:
|
| 1152 |
-
print(f"⚠️ Could not load cached data: {str(e)}")
|
| 1153 |
-
print(f" Falling back to constructing from issue metadata...")
|
| 1154 |
-
return None
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 1158 |
"""
|
| 1159 |
Upload file to HuggingFace with exponential backoff retry logic.
|
|
@@ -1182,18 +178,18 @@ def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, to
|
|
| 1182 |
token=token
|
| 1183 |
)
|
| 1184 |
if attempt > 0:
|
| 1185 |
-
print(f"
|
| 1186 |
return True
|
| 1187 |
|
| 1188 |
except Exception as e:
|
| 1189 |
if attempt < max_retries - 1:
|
| 1190 |
wait_time = delay + random.uniform(0, 1.0)
|
| 1191 |
-
print(f"
|
| 1192 |
-
print(f"
|
| 1193 |
time.sleep(wait_time)
|
| 1194 |
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 1195 |
else:
|
| 1196 |
-
print(f"
|
| 1197 |
raise
|
| 1198 |
|
| 1199 |
|
|
@@ -1223,7 +219,7 @@ def save_agent_to_hf(data):
|
|
| 1223 |
repo_type="dataset",
|
| 1224 |
token=token
|
| 1225 |
)
|
| 1226 |
-
print(f"
|
| 1227 |
return True
|
| 1228 |
finally:
|
| 1229 |
# Always clean up local file, even if upload fails
|
|
@@ -1231,207 +227,48 @@ def save_agent_to_hf(data):
|
|
| 1231 |
os.remove(filename)
|
| 1232 |
|
| 1233 |
except Exception as e:
|
| 1234 |
-
print(f"
|
| 1235 |
return False
|
| 1236 |
|
| 1237 |
|
| 1238 |
-
|
| 1239 |
-
|
| 1240 |
-
# =============================================================================
|
| 1241 |
-
# DATA MANAGEMENT
|
| 1242 |
-
# =============================================================================
|
| 1243 |
-
|
| 1244 |
-
def save_leaderboard_and_metrics_to_hf():
|
| 1245 |
"""
|
| 1246 |
-
|
| 1247 |
-
If the file exists, it will be overwritten.
|
| 1248 |
|
| 1249 |
Returns:
|
| 1250 |
-
|
|
|
|
| 1251 |
"""
|
| 1252 |
-
import io
|
| 1253 |
-
|
| 1254 |
try:
|
| 1255 |
token = get_hf_token()
|
| 1256 |
-
|
| 1257 |
-
raise Exception("No HuggingFace token found")
|
| 1258 |
-
|
| 1259 |
-
api = HfApi(token=token)
|
| 1260 |
-
|
| 1261 |
-
print(f"\n{'='*80}")
|
| 1262 |
-
print(f"📊 Preparing leaderboard and metrics data for upload...")
|
| 1263 |
-
print(f"{'='*80}\n")
|
| 1264 |
-
|
| 1265 |
-
# Get leaderboard data
|
| 1266 |
-
print(" Constructing leaderboard data...")
|
| 1267 |
-
leaderboard_data = construct_leaderboard_from_metadata()
|
| 1268 |
-
|
| 1269 |
-
# Get monthly metrics data (all agents, not just top N)
|
| 1270 |
-
print(" Calculating monthly metrics...")
|
| 1271 |
-
monthly_metrics = calculate_monthly_metrics_by_agent(top_n=None)
|
| 1272 |
-
|
| 1273 |
-
# Combine into a single structure
|
| 1274 |
-
combined_data = {
|
| 1275 |
-
"leaderboard": leaderboard_data,
|
| 1276 |
-
"monthly_metrics": monthly_metrics,
|
| 1277 |
-
"metadata": {
|
| 1278 |
-
"last_updated": datetime.now(timezone.utc).isoformat(),
|
| 1279 |
-
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
|
| 1280 |
-
"total_agents": len(leaderboard_data)
|
| 1281 |
-
}
|
| 1282 |
-
}
|
| 1283 |
-
|
| 1284 |
-
print(f" Leaderboard entries: {len(leaderboard_data)}")
|
| 1285 |
-
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
|
| 1286 |
-
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1287 |
|
| 1288 |
-
#
|
| 1289 |
-
|
| 1290 |
-
file_like_object = io.BytesIO(json_content.encode('utf-8'))
|
| 1291 |
-
|
| 1292 |
-
# Upload to HuggingFace (will overwrite if exists)
|
| 1293 |
-
print(f"\n🤗 Uploading to {LEADERBOARD_REPO}...")
|
| 1294 |
-
upload_file_with_backoff(
|
| 1295 |
-
api,
|
| 1296 |
-
path_or_fileobj=file_like_object,
|
| 1297 |
-
path_in_repo="swe-issue.json",
|
| 1298 |
repo_id=LEADERBOARD_REPO,
|
|
|
|
| 1299 |
repo_type="dataset",
|
| 1300 |
-
token=token
|
| 1301 |
-
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 1302 |
)
|
| 1303 |
|
| 1304 |
-
|
| 1305 |
-
|
| 1306 |
-
|
| 1307 |
-
return True
|
| 1308 |
-
|
| 1309 |
-
except Exception as e:
|
| 1310 |
-
print(f"✗ Error saving leaderboard and metrics: {str(e)}")
|
| 1311 |
-
import traceback
|
| 1312 |
-
traceback.print_exc()
|
| 1313 |
-
return False
|
| 1314 |
-
|
| 1315 |
-
|
| 1316 |
-
def mine_all_agents():
|
| 1317 |
-
"""
|
| 1318 |
-
Mine issue metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
|
| 1319 |
-
Uses BATCHED BigQuery queries for all agents (efficient approach).
|
| 1320 |
-
"""
|
| 1321 |
-
# Load agent metadata from HuggingFace
|
| 1322 |
-
agents = load_agents_from_hf()
|
| 1323 |
-
if not agents:
|
| 1324 |
-
print("No agents found in HuggingFace dataset")
|
| 1325 |
-
return
|
| 1326 |
-
|
| 1327 |
-
# Extract all identifiers
|
| 1328 |
-
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1329 |
-
if not identifiers:
|
| 1330 |
-
print("No valid agent identifiers found")
|
| 1331 |
-
return
|
| 1332 |
-
|
| 1333 |
-
print(f"\n{'='*80}")
|
| 1334 |
-
print(f"⛏️ [MINE] Starting BigQuery data mining for {len(identifiers)} agents")
|
| 1335 |
-
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1336 |
-
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
|
| 1337 |
-
print(f"⚠️ This will query BigQuery and may take several minutes")
|
| 1338 |
-
print(f"{'='*80}\n")
|
| 1339 |
-
|
| 1340 |
-
# Initialize BigQuery client
|
| 1341 |
-
try:
|
| 1342 |
-
client = get_bigquery_client()
|
| 1343 |
-
except Exception as e:
|
| 1344 |
-
print(f"✗ Failed to initialize BigQuery client: {str(e)}")
|
| 1345 |
-
return
|
| 1346 |
-
|
| 1347 |
-
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 1348 |
-
current_time = datetime.now(timezone.utc)
|
| 1349 |
-
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 1350 |
-
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1351 |
-
|
| 1352 |
-
try:
|
| 1353 |
-
# Use batched approach for better performance
|
| 1354 |
-
# upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes
|
| 1355 |
-
all_metadata = fetch_issue_metadata_batched(
|
| 1356 |
-
client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True
|
| 1357 |
-
)
|
| 1358 |
|
| 1359 |
-
|
| 1360 |
-
|
| 1361 |
-
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1362 |
|
| 1363 |
-
|
| 1364 |
-
print(f"✅ BigQuery mining and upload complete!")
|
| 1365 |
-
print(f" Total agents: {len(agents)}")
|
| 1366 |
-
print(f" Agents with data: {agents_with_data}")
|
| 1367 |
-
print(f" Total PRs found: {total_prs}")
|
| 1368 |
-
print(f"{'='*80}\n")
|
| 1369 |
|
| 1370 |
except Exception as e:
|
| 1371 |
-
print(f"
|
| 1372 |
-
|
| 1373 |
-
traceback.print_exc()
|
| 1374 |
-
return
|
| 1375 |
-
|
| 1376 |
-
# After mining is complete, save leaderboard and metrics to HuggingFace
|
| 1377 |
-
print(f"📤 Uploading leaderboard and metrics data...")
|
| 1378 |
-
if save_leaderboard_and_metrics_to_hf():
|
| 1379 |
-
print(f"✓ Leaderboard and metrics successfully uploaded to {LEADERBOARD_REPO}")
|
| 1380 |
-
else:
|
| 1381 |
-
print(f"⚠️ Failed to upload leaderboard and metrics data")
|
| 1382 |
-
|
| 1383 |
-
|
| 1384 |
-
def construct_leaderboard_from_metadata():
|
| 1385 |
-
"""
|
| 1386 |
-
Construct leaderboard from stored issue metadata instead of fetching all issues.
|
| 1387 |
-
Much more memory-efficient and faster.
|
| 1388 |
-
|
| 1389 |
-
Returns dictionary of agent stats.
|
| 1390 |
-
"""
|
| 1391 |
-
print("📊 Constructing leaderboard from issue metadata...")
|
| 1392 |
-
# Load agents
|
| 1393 |
-
agents = load_agents_from_hf()
|
| 1394 |
-
if not agents:
|
| 1395 |
-
print("No agents found")
|
| 1396 |
-
return {}
|
| 1397 |
-
|
| 1398 |
-
# Load all issue metadata
|
| 1399 |
-
all_metadata = load_issue_metadata()
|
| 1400 |
-
|
| 1401 |
-
cache_dict = {}
|
| 1402 |
-
|
| 1403 |
-
for agent in agents:
|
| 1404 |
-
identifier = agent.get('github_identifier')
|
| 1405 |
-
agent_name = agent.get('name', 'Unknown')
|
| 1406 |
-
|
| 1407 |
-
# Filter metadata for this agent
|
| 1408 |
-
bot_metadata = [issue for issue in all_metadata if issue.get('agent_identifier') == identifier]
|
| 1409 |
-
|
| 1410 |
-
# Calculate stats
|
| 1411 |
-
stats = calculate_issue_stats_from_metadata(bot_metadata)
|
| 1412 |
-
|
| 1413 |
-
cache_dict[identifier] = {
|
| 1414 |
-
'name': agent_name,
|
| 1415 |
-
'website': agent.get('website', 'N/A'),
|
| 1416 |
-
'github_identifier': identifier,
|
| 1417 |
-
**stats
|
| 1418 |
-
}
|
| 1419 |
-
|
| 1420 |
-
return cache_dict
|
| 1421 |
|
| 1422 |
|
| 1423 |
# =============================================================================
|
| 1424 |
# UI FUNCTIONS
|
| 1425 |
# =============================================================================
|
| 1426 |
|
| 1427 |
-
def generate_color(index, total):
|
| 1428 |
-
"""Generate distinct colors using HSL color space for better distribution"""
|
| 1429 |
-
hue = (index * 360 / total) % 360
|
| 1430 |
-
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
|
| 1431 |
-
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
|
| 1432 |
-
return f'hsl({hue}, {saturation}%, {lightness}%)'
|
| 1433 |
-
|
| 1434 |
-
|
| 1435 |
def create_monthly_metrics_plot(top_n=5):
|
| 1436 |
"""
|
| 1437 |
Create a Plotly figure with dual y-axes showing:
|
|
@@ -1443,37 +280,47 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1443 |
Args:
|
| 1444 |
top_n: Number of top agents to show (default: 5)
|
| 1445 |
"""
|
| 1446 |
-
#
|
| 1447 |
-
|
| 1448 |
-
|
| 1449 |
-
if
|
| 1450 |
-
#
|
| 1451 |
-
|
| 1452 |
-
|
| 1453 |
-
|
| 1454 |
-
|
| 1455 |
-
|
| 1456 |
-
|
| 1457 |
-
|
| 1458 |
-
|
| 1459 |
-
|
| 1460 |
-
|
| 1461 |
-
|
| 1462 |
-
|
| 1463 |
-
|
| 1464 |
-
|
| 1465 |
-
|
| 1466 |
-
|
| 1467 |
-
|
| 1468 |
-
|
| 1469 |
-
|
| 1470 |
-
|
| 1471 |
-
|
| 1472 |
-
|
| 1473 |
-
|
| 1474 |
-
|
| 1475 |
-
|
| 1476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1477 |
|
| 1478 |
if not metrics['agents'] or not metrics['months']:
|
| 1479 |
# Return an empty figure with a message
|
|
@@ -1494,15 +341,23 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1494 |
# Create figure with secondary y-axis
|
| 1495 |
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 1496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1497 |
agents = metrics['agents']
|
| 1498 |
months = metrics['months']
|
| 1499 |
data = metrics['data']
|
| 1500 |
|
| 1501 |
-
# Generate
|
| 1502 |
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
|
| 1503 |
|
| 1504 |
# Add traces for each agent
|
| 1505 |
-
for agent_name in agents:
|
| 1506 |
color = agent_colors[agent_name]
|
| 1507 |
agent_data = data[agent_name]
|
| 1508 |
|
|
@@ -1520,10 +375,11 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1520 |
name=agent_name,
|
| 1521 |
mode='lines+markers',
|
| 1522 |
line=dict(color=color, width=2),
|
| 1523 |
-
marker=dict(size=
|
| 1524 |
legendgroup=agent_name,
|
| 1525 |
-
showlegend=
|
| 1526 |
-
hovertemplate='<b
|
|
|
|
| 1527 |
'Resolved Rate: %{y:.2f}%<br>' +
|
| 1528 |
'<extra></extra>'
|
| 1529 |
),
|
|
@@ -1547,8 +403,9 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1547 |
name=agent_name,
|
| 1548 |
marker=dict(color=color, opacity=0.6),
|
| 1549 |
legendgroup=agent_name,
|
| 1550 |
-
showlegend=False, #
|
| 1551 |
-
hovertemplate='<b
|
|
|
|
| 1552 |
'Total Issues: %{y}<br>' +
|
| 1553 |
'<extra></extra>',
|
| 1554 |
offsetgroup=agent_name # Group bars by agent for proper spacing
|
|
@@ -1558,23 +415,26 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1558 |
|
| 1559 |
# Update axes labels
|
| 1560 |
fig.update_xaxes(title_text=None)
|
| 1561 |
-
fig.update_yaxes(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1562 |
fig.update_yaxes(title_text="<b>Total Issues</b>", secondary_y=True)
|
| 1563 |
|
| 1564 |
# Update layout
|
|
|
|
| 1565 |
fig.update_layout(
|
| 1566 |
title=None,
|
| 1567 |
-
hovermode='closest',
|
| 1568 |
barmode='group',
|
| 1569 |
height=600,
|
| 1570 |
-
|
| 1571 |
-
|
| 1572 |
-
yanchor="bottom",
|
| 1573 |
-
y=1.02,
|
| 1574 |
-
xanchor="right",
|
| 1575 |
-
x=1
|
| 1576 |
-
),
|
| 1577 |
-
margin=dict(l=50, r=50, t=100, b=50)
|
| 1578 |
)
|
| 1579 |
|
| 1580 |
return fig
|
|
@@ -1582,39 +442,52 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1582 |
|
| 1583 |
def get_leaderboard_dataframe():
|
| 1584 |
"""
|
| 1585 |
-
Load leaderboard from
|
| 1586 |
-
Falls back to constructing from issue metadata if cache is unavailable.
|
| 1587 |
Returns formatted DataFrame sorted by total issues.
|
| 1588 |
"""
|
| 1589 |
-
#
|
| 1590 |
-
|
| 1591 |
|
| 1592 |
-
if
|
| 1593 |
-
|
| 1594 |
-
|
| 1595 |
-
|
| 1596 |
-
|
| 1597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1598 |
|
| 1599 |
if not cache_dict:
|
|
|
|
| 1600 |
# Return empty DataFrame with correct columns if no data
|
| 1601 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 1602 |
return pd.DataFrame(columns=column_names)
|
| 1603 |
|
| 1604 |
rows = []
|
| 1605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1606 |
# Filter out agents with zero total issues
|
| 1607 |
-
if
|
|
|
|
| 1608 |
continue
|
|
|
|
| 1609 |
# Only include display-relevant fields
|
| 1610 |
rows.append([
|
| 1611 |
data.get('name', 'Unknown'),
|
| 1612 |
data.get('website', 'N/A'),
|
| 1613 |
-
|
| 1614 |
data.get('resolved_issues', 0),
|
| 1615 |
data.get('resolved_rate', 0.0),
|
| 1616 |
])
|
| 1617 |
|
|
|
|
|
|
|
|
|
|
| 1618 |
# Create DataFrame
|
| 1619 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 1620 |
df = pd.DataFrame(rows, columns=column_names)
|
|
@@ -1629,95 +502,125 @@ def get_leaderboard_dataframe():
|
|
| 1629 |
if "Total Issues" in df.columns and not df.empty:
|
| 1630 |
df = df.sort_values(by="Total Issues", ascending=False).reset_index(drop=True)
|
| 1631 |
|
|
|
|
|
|
|
|
|
|
| 1632 |
return df
|
| 1633 |
|
| 1634 |
|
| 1635 |
-
def submit_agent(identifier, agent_name,
|
| 1636 |
"""
|
| 1637 |
Submit a new agent to the leaderboard.
|
| 1638 |
Validates input and saves submission.
|
| 1639 |
-
Issue data will be populated by the monthly mining task.
|
| 1640 |
"""
|
| 1641 |
# Validate required fields
|
| 1642 |
if not identifier or not identifier.strip():
|
| 1643 |
-
return "
|
| 1644 |
if not agent_name or not agent_name.strip():
|
| 1645 |
-
return "
|
| 1646 |
-
if not
|
| 1647 |
-
return "
|
| 1648 |
if not website or not website.strip():
|
| 1649 |
-
return "
|
| 1650 |
|
| 1651 |
# Clean inputs
|
| 1652 |
identifier = identifier.strip()
|
| 1653 |
agent_name = agent_name.strip()
|
| 1654 |
-
|
| 1655 |
website = website.strip()
|
| 1656 |
|
| 1657 |
# Validate GitHub identifier
|
| 1658 |
is_valid, message = validate_github_username(identifier)
|
| 1659 |
if not is_valid:
|
| 1660 |
-
return f"
|
| 1661 |
|
| 1662 |
# Check for duplicates by loading agents from HuggingFace
|
| 1663 |
agents = load_agents_from_hf()
|
| 1664 |
if agents:
|
| 1665 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 1666 |
if identifier in existing_names:
|
| 1667 |
-
return f"
|
| 1668 |
|
| 1669 |
# Create submission
|
| 1670 |
submission = {
|
| 1671 |
'name': agent_name,
|
| 1672 |
-
'
|
| 1673 |
'github_identifier': identifier,
|
| 1674 |
'website': website,
|
|
|
|
| 1675 |
}
|
| 1676 |
|
| 1677 |
# Save to HuggingFace
|
| 1678 |
if not save_agent_to_hf(submission):
|
| 1679 |
-
return "
|
| 1680 |
|
| 1681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1682 |
|
| 1683 |
|
| 1684 |
# =============================================================================
|
| 1685 |
# GRADIO APPLICATION
|
| 1686 |
# =============================================================================
|
| 1687 |
|
| 1688 |
-
print(f"\
|
| 1689 |
-
print(f"
|
| 1690 |
-
print(f"
|
| 1691 |
|
| 1692 |
-
# Start APScheduler for
|
| 1693 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 1694 |
scheduler.add_job(
|
| 1695 |
-
|
| 1696 |
-
trigger=CronTrigger(
|
| 1697 |
-
id='
|
| 1698 |
-
name='
|
| 1699 |
replace_existing=True
|
| 1700 |
)
|
| 1701 |
scheduler.start()
|
| 1702 |
print(f"\n{'='*80}")
|
| 1703 |
-
print(f"
|
| 1704 |
-
print(f"
|
| 1705 |
-
print(f"
|
| 1706 |
print(f"{'='*80}\n")
|
| 1707 |
|
| 1708 |
# Create Gradio interface
|
| 1709 |
with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as app:
|
| 1710 |
-
|
| 1711 |
-
gr.Markdown("# 🏆 SWE Agent Issue Leaderboard")
|
| 1712 |
gr.Markdown(f"Track and compare GitHub issue resolution statistics for SWE agents")
|
| 1713 |
|
| 1714 |
with gr.Tabs():
|
| 1715 |
|
| 1716 |
# Leaderboard Tab
|
| 1717 |
-
with gr.Tab("
|
| 1718 |
-
gr.Markdown(
|
| 1719 |
leaderboard_table = Leaderboard(
|
| 1720 |
-
value=
|
| 1721 |
datatype=LEADERBOARD_COLUMNS,
|
| 1722 |
search_columns=["Agent Name", "Website"],
|
| 1723 |
filter_columns=[
|
|
@@ -1732,41 +635,55 @@ with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as a
|
|
| 1732 |
]
|
| 1733 |
)
|
| 1734 |
|
| 1735 |
-
|
| 1736 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1737 |
|
| 1738 |
-
|
| 1739 |
-
|
| 1740 |
-
|
|
|
|
|
|
|
| 1741 |
)
|
| 1742 |
|
|
|
|
| 1743 |
# Submit Agent Tab
|
| 1744 |
-
with gr.Tab("
|
| 1745 |
-
|
| 1746 |
gr.Markdown("### Submit Your Agent")
|
| 1747 |
-
gr.Markdown("Fill in the details below to add your agent to the leaderboard.
|
| 1748 |
-
|
| 1749 |
with gr.Row():
|
| 1750 |
with gr.Column():
|
| 1751 |
github_input = gr.Textbox(
|
| 1752 |
label="GitHub Identifier*",
|
| 1753 |
-
placeholder="Your agent username (e.g., my-agent
|
| 1754 |
)
|
| 1755 |
name_input = gr.Textbox(
|
| 1756 |
label="Agent Name*",
|
| 1757 |
placeholder="Your agent's display name"
|
| 1758 |
)
|
| 1759 |
-
|
| 1760 |
with gr.Column():
|
| 1761 |
-
|
| 1762 |
-
label="
|
| 1763 |
-
placeholder="Your
|
| 1764 |
)
|
| 1765 |
website_input = gr.Textbox(
|
| 1766 |
-
label="Website",
|
| 1767 |
placeholder="https://your-agent-website.com"
|
| 1768 |
)
|
| 1769 |
-
|
| 1770 |
submit_button = gr.Button(
|
| 1771 |
"Submit Agent",
|
| 1772 |
variant="primary"
|
|
@@ -1775,15 +692,15 @@ with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as a
|
|
| 1775 |
label="Submission Status",
|
| 1776 |
interactive=False
|
| 1777 |
)
|
| 1778 |
-
|
| 1779 |
# Event handler
|
| 1780 |
submit_button.click(
|
| 1781 |
fn=submit_agent,
|
| 1782 |
-
inputs=[github_input, name_input,
|
| 1783 |
-
outputs=[submission_status, leaderboard_table
|
| 1784 |
)
|
| 1785 |
|
| 1786 |
|
| 1787 |
# Launch application
|
| 1788 |
if __name__ == "__main__":
|
| 1789 |
-
app.launch()
|
|
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
|
|
|
| 6 |
import requests
|
|
|
|
|
|
|
| 7 |
from huggingface_hub import HfApi, hf_hub_download
|
| 8 |
from huggingface_hub.errors import HfHubHTTPError
|
| 9 |
+
import backoff
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
import pandas as pd
|
| 12 |
import random
|
|
|
|
| 14 |
from plotly.subplots import make_subplots
|
| 15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 16 |
from apscheduler.triggers.cron import CronTrigger
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Load environment variables
|
| 19 |
load_dotenv()
|
|
|
|
| 23 |
# =============================================================================
|
| 24 |
|
| 25 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 26 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
| 27 |
+
MAX_RETRIES = 5
|
|
|
|
|
|
|
| 28 |
|
| 29 |
LEADERBOARD_COLUMNS = [
|
| 30 |
("Agent Name", "string"),
|
|
|
|
| 39 |
# =============================================================================
|
| 40 |
|
| 41 |
def is_rate_limit_error(e):
|
| 42 |
+
"""Check if exception is a HuggingFace rate limit error (429)."""
|
| 43 |
+
if isinstance(e, HfHubHTTPError):
|
| 44 |
+
return e.response.status_code == 429
|
| 45 |
+
return False
|
| 46 |
|
| 47 |
|
| 48 |
@backoff.on_exception(
|
| 49 |
backoff.expo,
|
| 50 |
HfHubHTTPError,
|
| 51 |
+
max_tries=MAX_RETRIES,
|
|
|
|
| 52 |
base=300,
|
| 53 |
max_value=3600,
|
| 54 |
+
giveup=lambda e: not is_rate_limit_error(e),
|
| 55 |
+
on_backoff=lambda details: print(
|
| 56 |
+
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
|
| 57 |
+
)
|
| 58 |
)
|
| 59 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 60 |
+
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
|
| 61 |
return api.list_repo_files(**kwargs)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
@backoff.on_exception(
|
| 65 |
backoff.expo,
|
| 66 |
HfHubHTTPError,
|
| 67 |
+
max_tries=MAX_RETRIES,
|
|
|
|
| 68 |
base=300,
|
| 69 |
max_value=3600,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
giveup=lambda e: not is_rate_limit_error(e),
|
| 71 |
+
on_backoff=lambda details: print(
|
| 72 |
+
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
+
)
|
| 75 |
+
def hf_hub_download_with_backoff(**kwargs):
|
| 76 |
+
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
|
| 77 |
+
return hf_hub_download(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
# =============================================================================
|
| 81 |
+
# GITHUB USERNAME VALIDATION
|
| 82 |
# =============================================================================
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def validate_github_username(identifier):
|
| 85 |
+
"""Verify that a GitHub identifier exists."""
|
| 86 |
try:
|
| 87 |
+
response = requests.get(f'https://api.github.com/users/{identifier}', timeout=10)
|
| 88 |
+
return (True, "Username is valid") if response.status_code == 200 else (False, "GitHub identifier not found" if response.status_code == 404 else f"Validation error: HTTP {response.status_code}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
except Exception as e:
|
| 90 |
return False, f"Validation error: {str(e)}"
|
| 91 |
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# =============================================================================
|
| 94 |
# HUGGINGFACE DATASET OPERATIONS
|
| 95 |
# =============================================================================
|
|
|
|
| 101 |
agents = []
|
| 102 |
|
| 103 |
# List all files in the repository
|
| 104 |
+
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 105 |
|
| 106 |
# Filter for JSON files only
|
| 107 |
json_files = [f for f in files if f.endswith('.json')]
|
|
|
|
| 128 |
# Add or override github_identifier to match filename
|
| 129 |
agent_data['github_identifier'] = filename_identifier
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
agents.append(agent_data)
|
| 132 |
|
| 133 |
except Exception as e:
|
| 134 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 135 |
continue
|
| 136 |
|
| 137 |
+
print(f"Loaded {len(agents)} agents from HuggingFace")
|
| 138 |
return agents
|
| 139 |
|
| 140 |
except Exception as e:
|
|
|
|
| 142 |
return None
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
| 145 |
def get_hf_token():
|
| 146 |
"""Get HuggingFace token from environment variables."""
|
| 147 |
token = os.getenv('HF_TOKEN')
|
|
|
|
| 150 |
return token
|
| 151 |
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 154 |
"""
|
| 155 |
Upload file to HuggingFace with exponential backoff retry logic.
|
|
|
|
| 178 |
token=token
|
| 179 |
)
|
| 180 |
if attempt > 0:
|
| 181 |
+
print(f" Upload succeeded on attempt {attempt + 1}/{max_retries}")
|
| 182 |
return True
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
if attempt < max_retries - 1:
|
| 186 |
wait_time = delay + random.uniform(0, 1.0)
|
| 187 |
+
print(f" Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
| 188 |
+
print(f" Retrying in {wait_time:.1f} seconds...")
|
| 189 |
time.sleep(wait_time)
|
| 190 |
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 191 |
else:
|
| 192 |
+
print(f" Upload failed after {max_retries} attempts: {str(e)}")
|
| 193 |
raise
|
| 194 |
|
| 195 |
|
|
|
|
| 219 |
repo_type="dataset",
|
| 220 |
token=token
|
| 221 |
)
|
| 222 |
+
print(f"Saved agent to HuggingFace: {filename}")
|
| 223 |
return True
|
| 224 |
finally:
|
| 225 |
# Always clean up local file, even if upload fails
|
|
|
|
| 227 |
os.remove(filename)
|
| 228 |
|
| 229 |
except Exception as e:
|
| 230 |
+
print(f"Error saving agent: {str(e)}")
|
| 231 |
return False
|
| 232 |
|
| 233 |
|
| 234 |
+
def load_leaderboard_data_from_hf():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
"""
|
| 236 |
+
Load leaderboard data and monthly metrics from HuggingFace dataset.
|
|
|
|
| 237 |
|
| 238 |
Returns:
|
| 239 |
+
dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'metadata' keys
|
| 240 |
+
Returns None if file doesn't exist or error occurs
|
| 241 |
"""
|
|
|
|
|
|
|
| 242 |
try:
|
| 243 |
token = get_hf_token()
|
| 244 |
+
filename = "swe-issue.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
+
# Download file
|
| 247 |
+
file_path = hf_hub_download_with_backoff(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
repo_id=LEADERBOARD_REPO,
|
| 249 |
+
filename=filename,
|
| 250 |
repo_type="dataset",
|
| 251 |
+
token=token
|
|
|
|
| 252 |
)
|
| 253 |
|
| 254 |
+
# Load JSON data
|
| 255 |
+
with open(file_path, 'r') as f:
|
| 256 |
+
data = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
+
last_updated = data.get('metadata', {}).get('last_updated', 'Unknown')
|
| 259 |
+
print(f"Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
|
|
|
|
| 260 |
|
| 261 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
except Exception as e:
|
| 264 |
+
print(f"Could not load leaderboard data from HuggingFace: {str(e)}")
|
| 265 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
|
| 268 |
# =============================================================================
|
| 269 |
# UI FUNCTIONS
|
| 270 |
# =============================================================================
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
def create_monthly_metrics_plot(top_n=5):
|
| 273 |
"""
|
| 274 |
Create a Plotly figure with dual y-axes showing:
|
|
|
|
| 280 |
Args:
|
| 281 |
top_n: Number of top agents to show (default: 5)
|
| 282 |
"""
|
| 283 |
+
# Load from saved dataset
|
| 284 |
+
saved_data = load_leaderboard_data_from_hf()
|
| 285 |
+
|
| 286 |
+
if not saved_data or 'monthly_metrics' not in saved_data:
|
| 287 |
+
# Return an empty figure with a message
|
| 288 |
+
fig = go.Figure()
|
| 289 |
+
fig.add_annotation(
|
| 290 |
+
text="No data available for visualization",
|
| 291 |
+
xref="paper", yref="paper",
|
| 292 |
+
x=0.5, y=0.5, showarrow=False,
|
| 293 |
+
font=dict(size=16)
|
| 294 |
+
)
|
| 295 |
+
fig.update_layout(
|
| 296 |
+
title=None,
|
| 297 |
+
xaxis_title=None,
|
| 298 |
+
height=500
|
| 299 |
+
)
|
| 300 |
+
return fig
|
| 301 |
+
|
| 302 |
+
metrics = saved_data['monthly_metrics']
|
| 303 |
+
print(f"Loaded monthly metrics from saved dataset")
|
| 304 |
+
|
| 305 |
+
# Apply top_n filter if specified
|
| 306 |
+
if top_n is not None and top_n > 0 and metrics.get('agents'):
|
| 307 |
+
# Calculate total issues for each agent
|
| 308 |
+
agent_totals = []
|
| 309 |
+
for agent_name in metrics['agents']:
|
| 310 |
+
agent_data = metrics['data'].get(agent_name, {})
|
| 311 |
+
total_issues = sum(agent_data.get('total_issues', []))
|
| 312 |
+
agent_totals.append((agent_name, total_issues))
|
| 313 |
+
|
| 314 |
+
# Sort by total issues and take top N
|
| 315 |
+
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 316 |
+
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 317 |
+
|
| 318 |
+
# Filter metrics to only include top agents
|
| 319 |
+
metrics = {
|
| 320 |
+
'agents': top_agents,
|
| 321 |
+
'months': metrics['months'],
|
| 322 |
+
'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
|
| 323 |
+
}
|
| 324 |
|
| 325 |
if not metrics['agents'] or not metrics['months']:
|
| 326 |
# Return an empty figure with a message
|
|
|
|
| 341 |
# Create figure with secondary y-axis
|
| 342 |
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 343 |
|
| 344 |
+
# Generate unique colors for many agents using HSL color space
|
| 345 |
+
def generate_color(index, total):
|
| 346 |
+
"""Generate distinct colors using HSL color space for better distribution"""
|
| 347 |
+
hue = (index * 360 / total) % 360
|
| 348 |
+
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
|
| 349 |
+
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
|
| 350 |
+
return f'hsl({hue}, {saturation}%, {lightness}%)'
|
| 351 |
+
|
| 352 |
agents = metrics['agents']
|
| 353 |
months = metrics['months']
|
| 354 |
data = metrics['data']
|
| 355 |
|
| 356 |
+
# Generate colors for all agents
|
| 357 |
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
|
| 358 |
|
| 359 |
# Add traces for each agent
|
| 360 |
+
for idx, agent_name in enumerate(agents):
|
| 361 |
color = agent_colors[agent_name]
|
| 362 |
agent_data = data[agent_name]
|
| 363 |
|
|
|
|
| 375 |
name=agent_name,
|
| 376 |
mode='lines+markers',
|
| 377 |
line=dict(color=color, width=2),
|
| 378 |
+
marker=dict(size=8),
|
| 379 |
legendgroup=agent_name,
|
| 380 |
+
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N agents
|
| 381 |
+
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 382 |
+
'Month: %{x}<br>' +
|
| 383 |
'Resolved Rate: %{y:.2f}%<br>' +
|
| 384 |
'<extra></extra>'
|
| 385 |
),
|
|
|
|
| 403 |
name=agent_name,
|
| 404 |
marker=dict(color=color, opacity=0.6),
|
| 405 |
legendgroup=agent_name,
|
| 406 |
+
showlegend=False, # Hide duplicate legend entry (already shown in Scatter)
|
| 407 |
+
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 408 |
+
'Month: %{x}<br>' +
|
| 409 |
'Total Issues: %{y}<br>' +
|
| 410 |
'<extra></extra>',
|
| 411 |
offsetgroup=agent_name # Group bars by agent for proper spacing
|
|
|
|
| 415 |
|
| 416 |
# Update axes labels
|
| 417 |
fig.update_xaxes(title_text=None)
|
| 418 |
+
fig.update_yaxes(
|
| 419 |
+
title_text="<b>Resolved Rate (%)</b>",
|
| 420 |
+
range=[0, 100],
|
| 421 |
+
secondary_y=False,
|
| 422 |
+
showticklabels=True,
|
| 423 |
+
tickmode='linear',
|
| 424 |
+
dtick=10,
|
| 425 |
+
showgrid=True
|
| 426 |
+
)
|
| 427 |
fig.update_yaxes(title_text="<b>Total Issues</b>", secondary_y=True)
|
| 428 |
|
| 429 |
# Update layout
|
| 430 |
+
show_legend = (top_n is not None and top_n <= 10)
|
| 431 |
fig.update_layout(
|
| 432 |
title=None,
|
| 433 |
+
hovermode='closest', # Show individual agent info on hover
|
| 434 |
barmode='group',
|
| 435 |
height=600,
|
| 436 |
+
showlegend=show_legend,
|
| 437 |
+
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
)
|
| 439 |
|
| 440 |
return fig
|
|
|
|
| 442 |
|
| 443 |
def get_leaderboard_dataframe():
|
| 444 |
"""
|
| 445 |
+
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
|
|
|
|
| 446 |
Returns formatted DataFrame sorted by total issues.
|
| 447 |
"""
|
| 448 |
+
# Load from saved dataset
|
| 449 |
+
saved_data = load_leaderboard_data_from_hf()
|
| 450 |
|
| 451 |
+
if not saved_data or 'leaderboard' not in saved_data:
|
| 452 |
+
print(f"No leaderboard data available")
|
| 453 |
+
# Return empty DataFrame with correct columns if no data
|
| 454 |
+
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 455 |
+
return pd.DataFrame(columns=column_names)
|
| 456 |
+
|
| 457 |
+
cache_dict = saved_data['leaderboard']
|
| 458 |
+
last_updated = saved_data.get('metadata', {}).get('last_updated', 'Unknown')
|
| 459 |
+
print(f"Loaded leaderboard from saved dataset (last updated: {last_updated})")
|
| 460 |
+
print(f"Cache dict size: {len(cache_dict)}")
|
| 461 |
|
| 462 |
if not cache_dict:
|
| 463 |
+
print("WARNING: cache_dict is empty!")
|
| 464 |
# Return empty DataFrame with correct columns if no data
|
| 465 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 466 |
return pd.DataFrame(columns=column_names)
|
| 467 |
|
| 468 |
rows = []
|
| 469 |
+
filtered_count = 0
|
| 470 |
+
for identifier, data in cache_dict.items():
|
| 471 |
+
total_issues = data.get('total_issues', 0)
|
| 472 |
+
print(f" Agent '{identifier}': {total_issues} issues")
|
| 473 |
+
|
| 474 |
# Filter out agents with zero total issues
|
| 475 |
+
if total_issues == 0:
|
| 476 |
+
filtered_count += 1
|
| 477 |
continue
|
| 478 |
+
|
| 479 |
# Only include display-relevant fields
|
| 480 |
rows.append([
|
| 481 |
data.get('name', 'Unknown'),
|
| 482 |
data.get('website', 'N/A'),
|
| 483 |
+
total_issues,
|
| 484 |
data.get('resolved_issues', 0),
|
| 485 |
data.get('resolved_rate', 0.0),
|
| 486 |
])
|
| 487 |
|
| 488 |
+
print(f"Filtered out {filtered_count} agents with 0 issues")
|
| 489 |
+
print(f"Leaderboard will show {len(rows)} agents")
|
| 490 |
+
|
| 491 |
# Create DataFrame
|
| 492 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 493 |
df = pd.DataFrame(rows, columns=column_names)
|
|
|
|
| 502 |
if "Total Issues" in df.columns and not df.empty:
|
| 503 |
df = df.sort_values(by="Total Issues", ascending=False).reset_index(drop=True)
|
| 504 |
|
| 505 |
+
print(f"Final DataFrame shape: {df.shape}")
|
| 506 |
+
print("="*60 + "\n")
|
| 507 |
+
|
| 508 |
return df
|
| 509 |
|
| 510 |
|
| 511 |
+
def submit_agent(identifier, agent_name, organization, website):
|
| 512 |
"""
|
| 513 |
Submit a new agent to the leaderboard.
|
| 514 |
Validates input and saves submission.
|
|
|
|
| 515 |
"""
|
| 516 |
# Validate required fields
|
| 517 |
if not identifier or not identifier.strip():
|
| 518 |
+
return "ERROR: GitHub identifier is required", gr.update()
|
| 519 |
if not agent_name or not agent_name.strip():
|
| 520 |
+
return "ERROR: Agent name is required", gr.update()
|
| 521 |
+
if not organization or not organization.strip():
|
| 522 |
+
return "ERROR: Organization name is required", gr.update()
|
| 523 |
if not website or not website.strip():
|
| 524 |
+
return "ERROR: Website URL is required", gr.update()
|
| 525 |
|
| 526 |
# Clean inputs
|
| 527 |
identifier = identifier.strip()
|
| 528 |
agent_name = agent_name.strip()
|
| 529 |
+
organization = organization.strip()
|
| 530 |
website = website.strip()
|
| 531 |
|
| 532 |
# Validate GitHub identifier
|
| 533 |
is_valid, message = validate_github_username(identifier)
|
| 534 |
if not is_valid:
|
| 535 |
+
return f"ERROR: {message}", gr.update()
|
| 536 |
|
| 537 |
# Check for duplicates by loading agents from HuggingFace
|
| 538 |
agents = load_agents_from_hf()
|
| 539 |
if agents:
|
| 540 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 541 |
if identifier in existing_names:
|
| 542 |
+
return f"WARNING: Agent with identifier '{identifier}' already exists", gr.update()
|
| 543 |
|
| 544 |
# Create submission
|
| 545 |
submission = {
|
| 546 |
'name': agent_name,
|
| 547 |
+
'organization': organization,
|
| 548 |
'github_identifier': identifier,
|
| 549 |
'website': website,
|
| 550 |
+
'status': 'public'
|
| 551 |
}
|
| 552 |
|
| 553 |
# Save to HuggingFace
|
| 554 |
if not save_agent_to_hf(submission):
|
| 555 |
+
return "ERROR: Failed to save submission", gr.update()
|
| 556 |
|
| 557 |
+
# Return success message - data will be populated by backend updates
|
| 558 |
+
return f"SUCCESS: Successfully submitted {agent_name}! Issue data will be automatically populated by the backend system via the maintainers.", gr.update()
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
# =============================================================================
|
| 562 |
+
# DATA RELOAD FUNCTION
|
| 563 |
+
# =============================================================================
|
| 564 |
+
|
| 565 |
+
def reload_leaderboard_data():
|
| 566 |
+
"""
|
| 567 |
+
Reload leaderboard data from HuggingFace.
|
| 568 |
+
This function is called by the scheduler on a daily basis.
|
| 569 |
+
"""
|
| 570 |
+
print(f"\n{'='*80}")
|
| 571 |
+
print(f"Reloading leaderboard data from HuggingFace...")
|
| 572 |
+
print(f"{'='*80}\n")
|
| 573 |
+
|
| 574 |
+
try:
|
| 575 |
+
data = load_leaderboard_data_from_hf()
|
| 576 |
+
if data:
|
| 577 |
+
print(f"Successfully reloaded leaderboard data")
|
| 578 |
+
print(f" Last updated: {data.get('metadata', {}).get('last_updated', 'Unknown')}")
|
| 579 |
+
print(f" Agents: {len(data.get('leaderboard', {}))}")
|
| 580 |
+
else:
|
| 581 |
+
print(f"No data available")
|
| 582 |
+
except Exception as e:
|
| 583 |
+
print(f"Error reloading leaderboard data: {str(e)}")
|
| 584 |
+
|
| 585 |
+
print(f"{'='*80}\n")
|
| 586 |
|
| 587 |
|
| 588 |
# =============================================================================
|
| 589 |
# GRADIO APPLICATION
|
| 590 |
# =============================================================================
|
| 591 |
|
| 592 |
+
print(f"\nStarting SWE Agent Issue Leaderboard")
|
| 593 |
+
print(f" Data source: {LEADERBOARD_REPO}")
|
| 594 |
+
print(f" Reload frequency: Daily at 12:00 AM UTC\n")
|
| 595 |
|
| 596 |
+
# Start APScheduler for daily data reload at 12:00 AM UTC
|
| 597 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 598 |
scheduler.add_job(
|
| 599 |
+
reload_leaderboard_data,
|
| 600 |
+
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC daily
|
| 601 |
+
id='daily_data_reload',
|
| 602 |
+
name='Daily Data Reload',
|
| 603 |
replace_existing=True
|
| 604 |
)
|
| 605 |
scheduler.start()
|
| 606 |
print(f"\n{'='*80}")
|
| 607 |
+
print(f"Scheduler initialized successfully")
|
| 608 |
+
print(f"Reload schedule: Daily at 12:00 AM UTC")
|
| 609 |
+
print(f"On startup: Loads cached data from HuggingFace on demand")
|
| 610 |
print(f"{'='*80}\n")
|
| 611 |
|
| 612 |
# Create Gradio interface
|
| 613 |
with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as app:
|
| 614 |
+
gr.Markdown("# SWE Agent Issue Leaderboard")
|
|
|
|
| 615 |
gr.Markdown(f"Track and compare GitHub issue resolution statistics for SWE agents")
|
| 616 |
|
| 617 |
with gr.Tabs():
|
| 618 |
|
| 619 |
# Leaderboard Tab
|
| 620 |
+
with gr.Tab("Leaderboard"):
|
| 621 |
+
gr.Markdown("*Statistics are based on agent issue resolution activity tracked by the system*")
|
| 622 |
leaderboard_table = Leaderboard(
|
| 623 |
+
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
|
| 624 |
datatype=LEADERBOARD_COLUMNS,
|
| 625 |
search_columns=["Agent Name", "Website"],
|
| 626 |
filter_columns=[
|
|
|
|
| 635 |
]
|
| 636 |
)
|
| 637 |
|
| 638 |
+
# Load leaderboard data when app starts
|
| 639 |
+
app.load(
|
| 640 |
+
fn=get_leaderboard_dataframe,
|
| 641 |
+
inputs=[],
|
| 642 |
+
outputs=[leaderboard_table]
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
# Monthly Metrics Section
|
| 646 |
+
gr.Markdown("---") # Divider
|
| 647 |
+
gr.Markdown("### Monthly Performance - Top 5 Agents")
|
| 648 |
+
gr.Markdown("*Shows resolved rate trends and issue volumes for the most active agents*")
|
| 649 |
+
|
| 650 |
+
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
|
| 651 |
|
| 652 |
+
# Load monthly metrics when app starts
|
| 653 |
+
app.load(
|
| 654 |
+
fn=lambda: create_monthly_metrics_plot(),
|
| 655 |
+
inputs=[],
|
| 656 |
+
outputs=[monthly_metrics_plot]
|
| 657 |
)
|
| 658 |
|
| 659 |
+
|
| 660 |
# Submit Agent Tab
|
| 661 |
+
with gr.Tab("Submit Agent"):
|
| 662 |
+
|
| 663 |
gr.Markdown("### Submit Your Agent")
|
| 664 |
+
gr.Markdown("Fill in the details below to add your agent to the leaderboard.")
|
| 665 |
+
|
| 666 |
with gr.Row():
|
| 667 |
with gr.Column():
|
| 668 |
github_input = gr.Textbox(
|
| 669 |
label="GitHub Identifier*",
|
| 670 |
+
placeholder="Your agent username (e.g., my-agent[bot])"
|
| 671 |
)
|
| 672 |
name_input = gr.Textbox(
|
| 673 |
label="Agent Name*",
|
| 674 |
placeholder="Your agent's display name"
|
| 675 |
)
|
| 676 |
+
|
| 677 |
with gr.Column():
|
| 678 |
+
organization_input = gr.Textbox(
|
| 679 |
+
label="Organization*",
|
| 680 |
+
placeholder="Your organization or team name"
|
| 681 |
)
|
| 682 |
website_input = gr.Textbox(
|
| 683 |
+
label="Website*",
|
| 684 |
placeholder="https://your-agent-website.com"
|
| 685 |
)
|
| 686 |
+
|
| 687 |
submit_button = gr.Button(
|
| 688 |
"Submit Agent",
|
| 689 |
variant="primary"
|
|
|
|
| 692 |
label="Submission Status",
|
| 693 |
interactive=False
|
| 694 |
)
|
| 695 |
+
|
| 696 |
# Event handler
|
| 697 |
submit_button.click(
|
| 698 |
fn=submit_agent,
|
| 699 |
+
inputs=[github_input, name_input, organization_input, website_input],
|
| 700 |
+
outputs=[submission_status, leaderboard_table]
|
| 701 |
)
|
| 702 |
|
| 703 |
|
| 704 |
# Launch application
|
| 705 |
if __name__ == "__main__":
|
| 706 |
+
app.launch()
|
docker-compose.yml
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
services:
|
| 2 |
+
msr-miner:
|
| 3 |
+
build:
|
| 4 |
+
context: .
|
| 5 |
+
dockerfile: Dockerfile
|
| 6 |
+
container_name: gharchive-miner
|
| 7 |
+
restart: unless-stopped
|
| 8 |
+
env_file:
|
| 9 |
+
- .env
|
| 10 |
+
volumes:
|
| 11 |
+
# Mount entire workspace for live code updates
|
| 12 |
+
- .:/app
|
| 13 |
+
# Mount gharchive workspace for data storage
|
| 14 |
+
- ../gharchive:/gharchive:ro
|
| 15 |
+
# Mount bot data for agent repository storage
|
| 16 |
+
- ../bot_data:/bot_data:ro
|
| 17 |
+
environment:
|
| 18 |
+
- PYTHONUNBUFFERED=1
|
| 19 |
+
logging:
|
| 20 |
+
driver: "json-file"
|
| 21 |
+
options:
|
| 22 |
+
max-size: "10m"
|
| 23 |
+
max-file: "3"
|
msr.py
CHANGED
|
@@ -1,18 +1,19 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Minimalist Issue Metadata Mining Script
|
| 3 |
-
Mines issue metadata from GitHub Archive via BigQuery and saves to HuggingFace dataset.
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
-
import
|
| 9 |
from datetime import datetime, timezone, timedelta
|
| 10 |
from collections import defaultdict
|
|
|
|
| 11 |
from huggingface_hub import HfApi, hf_hub_download
|
| 12 |
from huggingface_hub.errors import HfHubHTTPError
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
-
|
| 15 |
import backoff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
|
@@ -21,75 +22,39 @@ load_dotenv()
|
|
| 21 |
# CONFIGURATION
|
| 22 |
# =============================================================================
|
| 23 |
|
| 24 |
-
AGENTS_REPO = "SWE-Arena/
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
#
|
| 31 |
-
# =============================================================================
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
max_tries=8,
|
| 43 |
-
base=300,
|
| 44 |
-
max_value=3600,
|
| 45 |
-
jitter=backoff.full_jitter,
|
| 46 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 47 |
-
)
|
| 48 |
-
def list_repo_files_with_backoff(api, **kwargs):
|
| 49 |
-
"""List repo files with exponential backoff on rate limit errors."""
|
| 50 |
-
return api.list_repo_files(**kwargs)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 56 |
-
max_tries=8,
|
| 57 |
-
base=300,
|
| 58 |
-
max_value=3600,
|
| 59 |
-
jitter=backoff.full_jitter,
|
| 60 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 61 |
-
)
|
| 62 |
-
def hf_hub_download_with_backoff(**kwargs):
|
| 63 |
-
"""Download from HF Hub with exponential backoff on rate limit errors."""
|
| 64 |
-
return hf_hub_download(**kwargs)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
max_value=3600,
|
| 73 |
-
jitter=backoff.full_jitter,
|
| 74 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 75 |
-
)
|
| 76 |
-
def upload_file_with_backoff(api, **kwargs):
|
| 77 |
-
"""Upload file with exponential backoff on rate limit errors."""
|
| 78 |
-
return api.upload_file(**kwargs)
|
| 79 |
-
|
| 80 |
-
@backoff.on_exception(
|
| 81 |
-
backoff.expo,
|
| 82 |
-
HfHubHTTPError,
|
| 83 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 84 |
-
max_tries=8,
|
| 85 |
-
base=300,
|
| 86 |
-
max_value=3600,
|
| 87 |
-
jitter=backoff.full_jitter,
|
| 88 |
-
on_backoff=lambda details: print(f" ⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/{8}...")
|
| 89 |
-
)
|
| 90 |
-
def upload_folder_with_backoff(api, **kwargs):
|
| 91 |
-
"""Upload folder with exponential backoff on rate limit errors."""
|
| 92 |
-
return api.upload_folder(**kwargs)
|
| 93 |
|
| 94 |
# =============================================================================
|
| 95 |
# UTILITY FUNCTIONS
|
|
@@ -116,7 +81,32 @@ def save_jsonl(filename, data):
|
|
| 116 |
"""Save list of dictionaries to JSONL file."""
|
| 117 |
with open(filename, 'w', encoding='utf-8') as f:
|
| 118 |
for item in data:
|
| 119 |
-
f.write(json.dumps(item) + '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
|
| 122 |
def get_hf_token():
|
|
@@ -127,581 +117,498 @@ def get_hf_token():
|
|
| 127 |
return token
|
| 128 |
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
""
|
| 137 |
-
|
| 138 |
-
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
|
| 139 |
|
| 140 |
-
if
|
| 141 |
-
|
| 142 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
|
| 143 |
-
temp_file.write(creds_json)
|
| 144 |
-
temp_path = temp_file.name
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
|
|
|
| 159 |
|
| 160 |
-
def generate_table_union_statements(start_date, end_date):
|
| 161 |
-
"""
|
| 162 |
-
Generate UNION ALL statements for githubarchive.month tables in date range.
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
"""
|
| 171 |
-
table_names = []
|
| 172 |
|
| 173 |
-
|
| 174 |
-
current_date = start_date
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
|
| 178 |
-
table_name = f"`githubarchive.month.{current_date.strftime('%Y%m')}`"
|
| 179 |
-
table_names.append(table_name)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
# =============================================================================
|
| 193 |
-
#
|
| 194 |
# =============================================================================
|
| 195 |
|
| 196 |
-
def
|
| 197 |
-
"""
|
| 198 |
-
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
end_date: End datetime (timezone-aware)
|
| 208 |
-
batch_size: Number of agents per batch (default: 100)
|
| 209 |
-
upload_immediately: Upload results to HuggingFace immediately after each batch (default: True)
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
-
# Split identifiers into batches
|
| 219 |
-
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
|
| 220 |
-
print(f" Total batches: {len(batches)}")
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
for batch_num, batch_identifiers in enumerate(batches, 1):
|
| 226 |
-
print(f"\n{'─'*80}")
|
| 227 |
-
print(f"📦 Processing Batch {batch_num}/{len(batches)} ({len(batch_identifiers)} agents)")
|
| 228 |
-
print(f"{'─'*80}")
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
# Merge results
|
| 236 |
-
for identifier, metadata_list in batch_results.items():
|
| 237 |
-
if identifier in all_metadata:
|
| 238 |
-
all_metadata[identifier].extend(metadata_list)
|
| 239 |
-
else:
|
| 240 |
-
all_metadata[identifier] = metadata_list
|
| 241 |
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
# Upload immediately after this batch if enabled
|
| 245 |
-
if upload_immediately and batch_results:
|
| 246 |
-
print(f"\n 🤗 Uploading batch {batch_num}/{len(batches)} results to HuggingFace...")
|
| 247 |
-
upload_success = 0
|
| 248 |
-
upload_errors = 0
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
print(f" Total agents with data: {len(all_metadata)}")
|
| 269 |
-
total_issues = sum(len(issues) for issues in all_metadata.values())
|
| 270 |
-
print(f" Total issues found: {total_issues}")
|
| 271 |
-
print(f"{'='*80}\n")
|
| 272 |
|
| 273 |
-
return
|
| 274 |
|
| 275 |
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
"""
|
| 278 |
-
Fetch issue metadata
|
|
|
|
|
|
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
commenter, or assignee.
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
| 286 |
|
| 287 |
Args:
|
| 288 |
-
|
| 289 |
-
identifiers: List of GitHub usernames/bot identifiers (
|
| 290 |
start_date: Start datetime (timezone-aware)
|
| 291 |
end_date: End datetime (timezone-aware)
|
| 292 |
|
| 293 |
Returns:
|
| 294 |
-
Dictionary mapping agent identifier to list of issue metadata
|
| 295 |
-
{
|
| 296 |
-
'agent-identifier': [
|
| 297 |
-
{
|
| 298 |
-
'url': Issue URL,
|
| 299 |
-
'created_at': Issue creation timestamp,
|
| 300 |
-
'closed_at': Close timestamp (if closed, else None),
|
| 301 |
-
'state_reason': Reason for closure (completed/not_planned/etc.)
|
| 302 |
-
},
|
| 303 |
-
...
|
| 304 |
-
],
|
| 305 |
-
...
|
| 306 |
-
}
|
| 307 |
-
"""
|
| 308 |
-
print(f"\n🔍 Querying BigQuery for {len(identifiers)} agents in SINGLE QUERY")
|
| 309 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 310 |
-
|
| 311 |
-
# Generate table UNION statements for issue events
|
| 312 |
-
issue_tables = generate_table_union_statements(start_date, end_date)
|
| 313 |
-
|
| 314 |
-
# Build identifier list (handle both bot and non-bot versions)
|
| 315 |
-
identifier_set = set()
|
| 316 |
-
for id in identifiers:
|
| 317 |
-
identifier_set.add(id)
|
| 318 |
-
# Also add stripped version without [bot] suffix
|
| 319 |
-
stripped = id.replace('[bot]', '')
|
| 320 |
-
if stripped != id:
|
| 321 |
-
identifier_set.add(stripped)
|
| 322 |
-
|
| 323 |
-
# Convert to array literal for UNNEST (avoids query size limits from large IN clauses)
|
| 324 |
-
identifier_array = '[' + ', '.join([f'"{id}"' for id in identifier_set]) + ']'
|
| 325 |
-
|
| 326 |
-
print(f" Total identifiers (including bot/non-bot variants): {len(identifier_set)}")
|
| 327 |
-
|
| 328 |
-
# Build comprehensive query with CTEs using UNNEST instead of large IN clauses
|
| 329 |
-
query = f"""
|
| 330 |
-
WITH agent_identifiers AS (
|
| 331 |
-
-- Create a table from the identifier array to avoid massive IN clauses
|
| 332 |
-
SELECT identifier
|
| 333 |
-
FROM UNNEST({identifier_array}) AS identifier
|
| 334 |
-
),
|
| 335 |
-
|
| 336 |
-
issue_events AS (
|
| 337 |
-
-- Get all issue events and comment events for ALL agents
|
| 338 |
-
SELECT
|
| 339 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') as url,
|
| 340 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.created_at') as created_at,
|
| 341 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.closed_at') as closed_at,
|
| 342 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.state_reason') as state_reason,
|
| 343 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.user.login') as author,
|
| 344 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.assignee.login') as assignee,
|
| 345 |
-
JSON_EXTRACT_SCALAR(payload, '$.comment.user.login') as commenter,
|
| 346 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.number') as issue_number,
|
| 347 |
-
repo.name as repo_name,
|
| 348 |
-
created_at as event_time
|
| 349 |
-
FROM (
|
| 350 |
-
{issue_tables}
|
| 351 |
-
)
|
| 352 |
-
WHERE
|
| 353 |
-
type IN ('IssuesEvent', 'IssueCommentEvent')
|
| 354 |
-
-- Exclude pull requests (they have pull_request field)
|
| 355 |
-
AND JSON_EXTRACT(payload, '$.issue.pull_request') IS NULL
|
| 356 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.issue.html_url') IS NOT NULL
|
| 357 |
-
-- Filter by author OR commenter OR assignee using JOIN instead of IN
|
| 358 |
-
AND (
|
| 359 |
-
JSON_EXTRACT_SCALAR(payload, '$.issue.user.login') IN (SELECT identifier FROM agent_identifiers)
|
| 360 |
-
OR JSON_EXTRACT_SCALAR(payload, '$.comment.user.login') IN (SELECT identifier FROM agent_identifiers)
|
| 361 |
-
OR JSON_EXTRACT_SCALAR(payload, '$.issue.assignee.login') IN (SELECT identifier FROM agent_identifiers)
|
| 362 |
-
)
|
| 363 |
-
),
|
| 364 |
-
|
| 365 |
-
latest_states AS (
|
| 366 |
-
-- Deduplicate to get latest state for each issue
|
| 367 |
-
SELECT
|
| 368 |
-
url,
|
| 369 |
-
created_at,
|
| 370 |
-
closed_at,
|
| 371 |
-
state_reason,
|
| 372 |
-
author,
|
| 373 |
-
assignee,
|
| 374 |
-
commenter
|
| 375 |
-
FROM issue_events
|
| 376 |
-
QUALIFY ROW_NUMBER() OVER (
|
| 377 |
-
PARTITION BY repo_name, issue_number
|
| 378 |
-
ORDER BY event_time DESC
|
| 379 |
-
) = 1
|
| 380 |
-
),
|
| 381 |
-
|
| 382 |
-
agent_issues AS (
|
| 383 |
-
-- Map each issue to its relevant agent(s)
|
| 384 |
-
SELECT DISTINCT
|
| 385 |
-
CASE
|
| 386 |
-
WHEN author IN (SELECT identifier FROM agent_identifiers) THEN author
|
| 387 |
-
WHEN commenter IN (SELECT identifier FROM agent_identifiers) THEN commenter
|
| 388 |
-
WHEN assignee IN (SELECT identifier FROM agent_identifiers) THEN assignee
|
| 389 |
-
ELSE NULL
|
| 390 |
-
END as agent_identifier,
|
| 391 |
-
url,
|
| 392 |
-
created_at,
|
| 393 |
-
closed_at,
|
| 394 |
-
state_reason
|
| 395 |
-
FROM latest_states
|
| 396 |
-
WHERE
|
| 397 |
-
author IN (SELECT identifier FROM agent_identifiers)
|
| 398 |
-
OR commenter IN (SELECT identifier FROM agent_identifiers)
|
| 399 |
-
OR assignee IN (SELECT identifier FROM agent_identifiers)
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
SELECT
|
| 403 |
-
agent_identifier,
|
| 404 |
-
url,
|
| 405 |
-
created_at,
|
| 406 |
-
closed_at,
|
| 407 |
-
state_reason
|
| 408 |
-
FROM agent_issues
|
| 409 |
-
WHERE agent_identifier IS NOT NULL
|
| 410 |
-
ORDER BY agent_identifier, created_at DESC
|
| 411 |
"""
|
|
|
|
|
|
|
| 412 |
|
| 413 |
-
# Calculate
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
print(f" Querying {query_days} days for issue and comment events...")
|
| 417 |
-
print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
|
| 418 |
-
|
| 419 |
-
try:
|
| 420 |
-
query_job = client.query(query)
|
| 421 |
-
results = list(query_job.result())
|
| 422 |
-
|
| 423 |
-
print(f" ✓ Found {len(results)} total issue records across all agents")
|
| 424 |
-
|
| 425 |
-
# Group results by agent
|
| 426 |
-
metadata_by_agent = defaultdict(list)
|
| 427 |
-
|
| 428 |
-
for row in results:
|
| 429 |
-
agent_id = row.agent_identifier
|
| 430 |
-
|
| 431 |
-
# Convert datetime objects to ISO strings
|
| 432 |
-
created_at = row.created_at
|
| 433 |
-
if hasattr(created_at, 'isoformat'):
|
| 434 |
-
created_at = created_at.isoformat()
|
| 435 |
-
|
| 436 |
-
closed_at = row.closed_at
|
| 437 |
-
if hasattr(closed_at, 'isoformat'):
|
| 438 |
-
closed_at = closed_at.isoformat()
|
| 439 |
-
|
| 440 |
-
metadata_by_agent[agent_id].append({
|
| 441 |
-
'url': row.url,
|
| 442 |
-
'created_at': created_at,
|
| 443 |
-
'closed_at': closed_at,
|
| 444 |
-
'state_reason': row.state_reason,
|
| 445 |
-
})
|
| 446 |
-
|
| 447 |
-
# Print breakdown by agent
|
| 448 |
-
print(f"\n 📊 Results breakdown by agent:")
|
| 449 |
-
for identifier in identifiers:
|
| 450 |
-
# Check both original and stripped versions
|
| 451 |
-
count = len(metadata_by_agent.get(identifier, []))
|
| 452 |
-
stripped = identifier.replace('[bot]', '')
|
| 453 |
-
if stripped != identifier:
|
| 454 |
-
count += len(metadata_by_agent.get(stripped, []))
|
| 455 |
-
|
| 456 |
-
if count > 0:
|
| 457 |
-
# Merge both versions if needed
|
| 458 |
-
all_metadata = metadata_by_agent.get(identifier, []) + metadata_by_agent.get(stripped, [])
|
| 459 |
-
completed_count = sum(1 for m in all_metadata if m['state_reason'] == 'completed')
|
| 460 |
-
closed_count = sum(1 for m in all_metadata if m['closed_at'] is not None)
|
| 461 |
-
open_count = count - closed_count
|
| 462 |
-
print(f" {identifier}: {count} issues ({completed_count} completed, {closed_count} closed, {open_count} open)")
|
| 463 |
-
|
| 464 |
-
# Convert defaultdict to regular dict and merge bot/non-bot versions
|
| 465 |
-
final_metadata = {}
|
| 466 |
-
for identifier in identifiers:
|
| 467 |
-
combined = metadata_by_agent.get(identifier, [])
|
| 468 |
-
stripped = identifier.replace('[bot]', '')
|
| 469 |
-
if stripped != identifier and stripped in metadata_by_agent:
|
| 470 |
-
combined.extend(metadata_by_agent[stripped])
|
| 471 |
-
|
| 472 |
-
if combined:
|
| 473 |
-
final_metadata[identifier] = combined
|
| 474 |
-
|
| 475 |
-
return final_metadata
|
| 476 |
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
return {}
|
| 482 |
|
|
|
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
Group issue metadata by exact date (year.month.day) for efficient daily storage.
|
| 491 |
-
Returns dict: {(year, month, day): [metadata_list]}
|
| 492 |
-
"""
|
| 493 |
-
grouped = defaultdict(list)
|
| 494 |
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
continue
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
|
|
|
|
|
|
|
|
|
| 509 |
|
| 510 |
-
|
| 511 |
-
"""
|
| 512 |
-
Save issue metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 513 |
-
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's issues.
|
| 514 |
|
| 515 |
-
|
| 516 |
-
|
|
|
|
|
|
|
| 517 |
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
agent_identifier: GitHub identifier of the agent (used as folder name)
|
| 521 |
-
"""
|
| 522 |
-
import shutil
|
| 523 |
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
raise Exception("No HuggingFace token found")
|
| 528 |
|
| 529 |
-
|
| 530 |
|
| 531 |
-
# Group by date (year, month, day)
|
| 532 |
-
grouped = group_metadata_by_date(metadata_list)
|
| 533 |
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
# Save to temp directory (complete overwrite, no merging)
|
| 555 |
-
save_jsonl(local_filename, day_metadata)
|
| 556 |
-
print(f" Prepared {len(day_metadata)} issues for {filename}")
|
| 557 |
-
|
| 558 |
-
# Upload entire folder using upload_folder (single commit per agent)
|
| 559 |
-
print(f" 🤗 Uploading {len(grouped)} files ({len(metadata_list)} total issues)...")
|
| 560 |
-
upload_folder_with_backoff(
|
| 561 |
-
api,
|
| 562 |
-
folder_path=temp_dir,
|
| 563 |
-
repo_id=ISSUE_METADATA_REPO,
|
| 564 |
-
repo_type="dataset",
|
| 565 |
-
commit_message=f"Update issue metadata for {agent_identifier} - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 566 |
-
)
|
| 567 |
-
print(f" ✓ Batch upload complete for {agent_identifier}")
|
| 568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
return True
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
except Exception as e:
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
return False
|
| 581 |
|
| 582 |
|
| 583 |
def load_agents_from_hf():
|
| 584 |
"""
|
| 585 |
-
Load all agent metadata JSON files from
|
| 586 |
-
|
| 587 |
-
The github_identifier is extracted from the filename (e.g., 'agent-name[bot].json' -> 'agent-name[bot]')
|
| 588 |
"""
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
|
| 593 |
-
|
| 594 |
-
files = list_repo_files_with_backoff(api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 595 |
|
| 596 |
-
|
| 597 |
-
|
|
|
|
| 598 |
|
| 599 |
-
|
|
|
|
|
|
|
| 600 |
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
|
| 610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
agent_data = json.load(f)
|
| 612 |
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
|
| 621 |
-
|
| 622 |
|
| 623 |
except Exception as e:
|
| 624 |
-
print(f"
|
| 625 |
continue
|
| 626 |
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
except Exception as e:
|
| 631 |
-
print(f"Could not load agents from HuggingFace: {str(e)}")
|
| 632 |
-
return []
|
| 633 |
-
|
| 634 |
|
| 635 |
-
# =============================================================================
|
| 636 |
-
# LEADERBOARD CALCULATION FUNCTIONS
|
| 637 |
-
# =============================================================================
|
| 638 |
|
| 639 |
def calculate_issue_stats_from_metadata(metadata_list):
|
| 640 |
-
"""
|
| 641 |
-
Calculate statistics from a list of issue metadata.
|
| 642 |
-
|
| 643 |
-
Returns:
|
| 644 |
-
dict: Issue statistics including total, closed, resolved counts and rate
|
| 645 |
-
"""
|
| 646 |
total_issues = len(metadata_list)
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
closed_issues = sum(1 for issue_meta in metadata_list
|
| 650 |
-
if issue_meta.get('closed_at') is not None)
|
| 651 |
-
|
| 652 |
-
# Count completed issues (subset of closed issues with state_reason="completed")
|
| 653 |
-
completed = sum(1 for issue_meta in metadata_list
|
| 654 |
if issue_meta.get('state_reason') == 'completed')
|
| 655 |
|
| 656 |
-
#
|
| 657 |
-
resolved_rate = (
|
| 658 |
|
| 659 |
return {
|
| 660 |
'total_issues': total_issues,
|
| 661 |
-
'closed_issues':
|
| 662 |
-
'resolved_issues':
|
| 663 |
'resolved_rate': round(resolved_rate, 2),
|
| 664 |
}
|
| 665 |
|
| 666 |
|
| 667 |
-
def
|
| 668 |
-
"""
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
Args:
|
| 672 |
-
all_metadata: Dictionary mapping agent_identifier to list of issue metadata
|
| 673 |
-
agents: List of agent dictionaries with metadata
|
| 674 |
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
'agents': list of agent names,
|
| 678 |
-
'months': list of month labels (e.g., '2025-01'),
|
| 679 |
-
'data': {
|
| 680 |
-
agent_name: {
|
| 681 |
-
'resolved_rates': list of resolved rates by month,
|
| 682 |
-
'total_issues': list of issue counts by month,
|
| 683 |
-
'resolved_issues': list of resolved issue counts by month
|
| 684 |
-
}
|
| 685 |
-
}
|
| 686 |
-
}
|
| 687 |
-
"""
|
| 688 |
-
# Create mapping from agent_identifier to agent_name
|
| 689 |
-
identifier_to_name = {
|
| 690 |
-
agent.get('github_identifier'): agent.get('name', agent.get('name', agent.get('github_identifier')))
|
| 691 |
-
for agent in agents if agent.get('github_identifier')
|
| 692 |
-
}
|
| 693 |
|
| 694 |
-
# Group by agent and month
|
| 695 |
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 696 |
|
| 697 |
-
for
|
| 698 |
-
agent_name = identifier_to_name.get(identifier, identifier)
|
| 699 |
-
|
| 700 |
for issue_meta in metadata_list:
|
| 701 |
created_at = issue_meta.get('created_at')
|
|
|
|
| 702 |
if not created_at:
|
| 703 |
continue
|
| 704 |
|
|
|
|
|
|
|
| 705 |
try:
|
| 706 |
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 707 |
month_key = f"{dt.year}-{dt.month:02d}"
|
|
@@ -710,42 +617,38 @@ def calculate_monthly_metrics(all_metadata, agents):
|
|
| 710 |
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 711 |
continue
|
| 712 |
|
| 713 |
-
# Get all unique months and sort them
|
| 714 |
all_months = set()
|
| 715 |
for agent_data in agent_month_data.values():
|
| 716 |
all_months.update(agent_data.keys())
|
| 717 |
months = sorted(list(all_months))
|
| 718 |
|
| 719 |
-
# Calculate metrics for each agent and month
|
| 720 |
result_data = {}
|
| 721 |
for agent_name, month_dict in agent_month_data.items():
|
| 722 |
resolved_rates = []
|
| 723 |
total_issues_list = []
|
| 724 |
resolved_issues_list = []
|
|
|
|
| 725 |
|
| 726 |
for month in months:
|
| 727 |
issues_in_month = month_dict.get(month, [])
|
| 728 |
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
# Count closed issues (those with closed_at timestamp)
|
| 733 |
-
closed_count = sum(1 for issue in issues_in_month if issue.get('closed_at') is not None)
|
| 734 |
-
|
| 735 |
-
# Total issues created in this month
|
| 736 |
total_count = len(issues_in_month)
|
| 737 |
|
| 738 |
-
#
|
| 739 |
-
resolved_rate = (
|
| 740 |
|
| 741 |
resolved_rates.append(resolved_rate)
|
| 742 |
total_issues_list.append(total_count)
|
| 743 |
-
resolved_issues_list.append(
|
|
|
|
| 744 |
|
| 745 |
result_data[agent_name] = {
|
| 746 |
'resolved_rates': resolved_rates,
|
| 747 |
'total_issues': total_issues_list,
|
| 748 |
-
'resolved_issues': resolved_issues_list
|
|
|
|
| 749 |
}
|
| 750 |
|
| 751 |
agents_list = sorted(list(agent_month_data.keys()))
|
|
@@ -757,168 +660,175 @@ def calculate_monthly_metrics(all_metadata, agents):
|
|
| 757 |
}
|
| 758 |
|
| 759 |
|
| 760 |
-
def
|
| 761 |
-
"""
|
| 762 |
-
|
| 763 |
-
|
|
|
|
| 764 |
|
| 765 |
-
|
| 766 |
-
all_metadata: Dictionary mapping agent_identifier to list of issue metadata
|
| 767 |
-
agents: List of agent dictionaries with metadata
|
| 768 |
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 773 |
|
|
|
|
|
|
|
|
|
|
| 774 |
try:
|
| 775 |
token = get_hf_token()
|
| 776 |
if not token:
|
| 777 |
raise Exception("No HuggingFace token found")
|
| 778 |
|
| 779 |
api = HfApi(token=token)
|
|
|
|
| 780 |
|
| 781 |
-
print(f"\n{'='*80}")
|
| 782 |
-
print(f"📊 Preparing leaderboard and metrics data for upload...")
|
| 783 |
-
print(f"{'='*80}\n")
|
| 784 |
-
|
| 785 |
-
# Build leaderboard data
|
| 786 |
-
print(" Constructing leaderboard data...")
|
| 787 |
-
leaderboard_data = {}
|
| 788 |
-
|
| 789 |
-
for agent in agents:
|
| 790 |
-
identifier = agent.get('github_identifier')
|
| 791 |
-
agent_name = agent.get('name', 'Unknown')
|
| 792 |
-
|
| 793 |
-
if not identifier:
|
| 794 |
-
continue
|
| 795 |
-
|
| 796 |
-
metadata = all_metadata.get(identifier, [])
|
| 797 |
-
stats = calculate_issue_stats_from_metadata(metadata)
|
| 798 |
-
|
| 799 |
-
leaderboard_data[identifier] = {
|
| 800 |
-
'name': agent_name,
|
| 801 |
-
'website': agent.get('website', 'N/A'),
|
| 802 |
-
'github_identifier': identifier,
|
| 803 |
-
**stats
|
| 804 |
-
}
|
| 805 |
-
|
| 806 |
-
# Get monthly metrics data
|
| 807 |
-
print(" Calculating monthly metrics...")
|
| 808 |
-
monthly_metrics = calculate_monthly_metrics(all_metadata, agents)
|
| 809 |
-
|
| 810 |
-
# Combine into a single structure
|
| 811 |
combined_data = {
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
"total_agents": len(leaderboard_data)
|
| 818 |
}
|
| 819 |
}
|
| 820 |
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 824 |
-
|
| 825 |
-
# Convert to JSON and create file-like object
|
| 826 |
-
json_content = json.dumps(combined_data, indent=2)
|
| 827 |
-
file_like_object = io.BytesIO(json_content.encode('utf-8'))
|
| 828 |
-
|
| 829 |
-
# Upload to HuggingFace (will overwrite if exists)
|
| 830 |
-
print(f"\n🤗 Uploading to {LEADERBOARD_REPO}...")
|
| 831 |
-
upload_file_with_backoff(
|
| 832 |
-
api,
|
| 833 |
-
path_or_fileobj=file_like_object,
|
| 834 |
-
path_in_repo="swe-issue.json",
|
| 835 |
-
repo_id=LEADERBOARD_REPO,
|
| 836 |
-
repo_type="dataset",
|
| 837 |
-
token=token,
|
| 838 |
-
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 839 |
-
)
|
| 840 |
-
|
| 841 |
-
print(f" ✓ Successfully uploaded swe-issue.json")
|
| 842 |
-
print(f"{'='*80}\n")
|
| 843 |
|
| 844 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
|
| 846 |
except Exception as e:
|
| 847 |
-
print(f"
|
| 848 |
import traceback
|
| 849 |
traceback.print_exc()
|
| 850 |
return False
|
| 851 |
|
| 852 |
|
| 853 |
# =============================================================================
|
| 854 |
-
#
|
| 855 |
# =============================================================================
|
| 856 |
|
| 857 |
def mine_all_agents():
|
| 858 |
"""
|
| 859 |
-
Mine issue metadata for all agents
|
| 860 |
-
|
| 861 |
"""
|
| 862 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
agents = load_agents_from_hf()
|
| 864 |
if not agents:
|
| 865 |
-
print("No agents found
|
| 866 |
return
|
| 867 |
|
| 868 |
-
# Extract all identifiers
|
| 869 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 870 |
if not identifiers:
|
| 871 |
-
print("No valid agent identifiers found")
|
| 872 |
return
|
| 873 |
|
| 874 |
-
print(f"
|
| 875 |
-
print(f"Starting issue metadata mining for {len(identifiers)} agents")
|
| 876 |
-
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 877 |
-
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
|
| 878 |
-
print(f"{'='*80}\n")
|
| 879 |
|
| 880 |
-
# Initialize BigQuery client
|
| 881 |
try:
|
| 882 |
-
|
| 883 |
except Exception as e:
|
| 884 |
-
print(f"
|
| 885 |
return
|
| 886 |
|
| 887 |
-
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 888 |
current_time = datetime.now(timezone.utc)
|
| 889 |
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 890 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 891 |
|
| 892 |
try:
|
| 893 |
-
#
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True
|
| 897 |
)
|
| 898 |
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
print(f" Total PRs found: {total_prs}")
|
| 908 |
-
print(f"{'='*80}\n")
|
| 909 |
|
| 910 |
except Exception as e:
|
| 911 |
-
print(f"
|
| 912 |
import traceback
|
| 913 |
traceback.print_exc()
|
| 914 |
-
return
|
| 915 |
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 922 |
|
| 923 |
|
| 924 |
# =============================================================================
|
|
@@ -926,4 +836,7 @@ def mine_all_agents():
|
|
| 926 |
# =============================================================================
|
| 927 |
|
| 928 |
if __name__ == "__main__":
|
| 929 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
import time
|
| 4 |
from datetime import datetime, timezone, timedelta
|
| 5 |
from collections import defaultdict
|
| 6 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 7 |
from huggingface_hub import HfApi, hf_hub_download
|
| 8 |
from huggingface_hub.errors import HfHubHTTPError
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
+
import duckdb
|
| 11 |
import backoff
|
| 12 |
+
import requests
|
| 13 |
+
import requests.exceptions
|
| 14 |
+
from apscheduler.schedulers.blocking import BlockingScheduler
|
| 15 |
+
from apscheduler.triggers.cron import CronTrigger
|
| 16 |
+
import logging
|
| 17 |
|
| 18 |
# Load environment variables
|
| 19 |
load_dotenv()
|
|
|
|
| 22 |
# CONFIGURATION
|
| 23 |
# =============================================================================
|
| 24 |
|
| 25 |
+
AGENTS_REPO = "SWE-Arena/bot_data"
|
| 26 |
+
AGENTS_REPO_LOCAL_PATH = os.path.expanduser("~/bot_data") # Local git clone path
|
| 27 |
+
DUCKDB_CACHE_FILE = "cache.duckdb"
|
| 28 |
+
GHARCHIVE_DATA_LOCAL_PATH = os.path.expanduser("~/gharchive/data")
|
| 29 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data"
|
| 30 |
+
LEADERBOARD_TIME_FRAME_DAYS = 180
|
| 31 |
|
| 32 |
+
# Git sync configuration (mandatory to get latest bot data)
|
| 33 |
+
GIT_SYNC_TIMEOUT = 300 # 5 minutes timeout for git pull
|
|
|
|
| 34 |
|
| 35 |
+
# OPTIMIZED DUCKDB CONFIGURATION
|
| 36 |
+
DUCKDB_THREADS = 8
|
| 37 |
+
DUCKDB_MEMORY_LIMIT = "64GB"
|
| 38 |
|
| 39 |
+
# Streaming batch configuration
|
| 40 |
+
BATCH_SIZE_DAYS = 7 # Process 1 week at a time (~168 hourly files)
|
| 41 |
+
# At this size: ~7 days ⚠ 24 files ⚠ ~100MB per file = ~16GB uncompressed per batch
|
| 42 |
|
| 43 |
+
# Download configuration
|
| 44 |
+
DOWNLOAD_WORKERS = 4
|
| 45 |
+
DOWNLOAD_RETRY_DELAY = 2
|
| 46 |
+
MAX_RETRIES = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Upload configuration
|
| 49 |
+
UPLOAD_DELAY_SECONDS = 5
|
| 50 |
+
UPLOAD_MAX_BACKOFF = 3600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Scheduler configuration
|
| 53 |
+
SCHEDULE_ENABLED = True
|
| 54 |
+
SCHEDULE_DAY_OF_WEEK = 'sun' # Sunday
|
| 55 |
+
SCHEDULE_HOUR = 0
|
| 56 |
+
SCHEDULE_MINUTE = 0
|
| 57 |
+
SCHEDULE_TIMEZONE = 'UTC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# =============================================================================
|
| 60 |
# UTILITY FUNCTIONS
|
|
|
|
| 81 |
"""Save list of dictionaries to JSONL file."""
|
| 82 |
with open(filename, 'w', encoding='utf-8') as f:
|
| 83 |
for item in data:
|
| 84 |
+
f.write(json.dumps(item) + '\\n')
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def normalize_date_format(date_string):
|
| 88 |
+
"""Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix."""
|
| 89 |
+
if not date_string or date_string == 'N/A':
|
| 90 |
+
return 'N/A'
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
import re
|
| 94 |
+
|
| 95 |
+
if isinstance(date_string, datetime):
|
| 96 |
+
return date_string.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 97 |
+
|
| 98 |
+
date_string = re.sub(r'\\s+', ' ', date_string.strip())
|
| 99 |
+
date_string = date_string.replace(' ', 'T')
|
| 100 |
+
|
| 101 |
+
if len(date_string) >= 3:
|
| 102 |
+
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 103 |
+
date_string = date_string + ':00'
|
| 104 |
+
|
| 105 |
+
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 106 |
+
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 107 |
+
except Exception as e:
|
| 108 |
+
print(f"Warning: Could not parse date '{date_string}': {e}")
|
| 109 |
+
return date_string
|
| 110 |
|
| 111 |
|
| 112 |
def get_hf_token():
|
|
|
|
| 117 |
return token
|
| 118 |
|
| 119 |
|
| 120 |
+
# =============================================================================
|
| 121 |
+
# GHARCHIVE DOWNLOAD FUNCTIONS
|
| 122 |
+
# =============================================================================
|
| 123 |
|
| 124 |
+
def download_file(url):
|
| 125 |
+
"""Download a GHArchive file with retry logic."""
|
| 126 |
+
filename = url.split("/")[-1]
|
| 127 |
+
filepath = os.path.join(GHARCHIVE_DATA_LOCAL_PATH, filename)
|
|
|
|
| 128 |
|
| 129 |
+
if os.path.exists(filepath):
|
| 130 |
+
return True
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
for attempt in range(MAX_RETRIES):
|
| 133 |
+
try:
|
| 134 |
+
response = requests.get(url, timeout=30)
|
| 135 |
+
response.raise_for_status()
|
| 136 |
+
with open(filepath, "wb") as f:
|
| 137 |
+
f.write(response.content)
|
| 138 |
+
return True
|
| 139 |
|
| 140 |
+
except requests.exceptions.HTTPError as e:
|
| 141 |
+
# 404 means the file doesn't exist in GHArchive - skip without retry
|
| 142 |
+
if e.response.status_code == 404:
|
| 143 |
+
if attempt == 0: # Only log once, not for each retry
|
| 144 |
+
print(f" ⚠ {filename}: Not available (404) - skipping")
|
| 145 |
+
return False
|
| 146 |
|
| 147 |
+
# Other HTTP errors (5xx, etc.) should be retried
|
| 148 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 149 |
+
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 150 |
+
time.sleep(wait_time)
|
| 151 |
|
| 152 |
+
except Exception as e:
|
| 153 |
+
# Network errors, timeouts, etc. should be retried
|
| 154 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 155 |
+
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 156 |
+
time.sleep(wait_time)
|
| 157 |
|
| 158 |
+
return False
|
| 159 |
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
def download_all_gharchive_data():
|
| 162 |
+
"""Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS."""
|
| 163 |
+
os.makedirs(GHARCHIVE_DATA_LOCAL_PATH, exist_ok=True)
|
| 164 |
|
| 165 |
+
end_date = datetime.now()
|
| 166 |
+
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
urls = []
|
| 169 |
+
current_date = start_date
|
| 170 |
+
while current_date <= end_date:
|
| 171 |
+
date_str = current_date.strftime("%Y-%m-%d")
|
| 172 |
+
for hour in range(24):
|
| 173 |
+
url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
|
| 174 |
+
urls.append(url)
|
| 175 |
+
current_date += timedelta(days=1)
|
| 176 |
|
| 177 |
+
downloads_processed = 0
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
try:
|
| 180 |
+
with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
|
| 181 |
+
futures = [executor.submit(download_file, url) for url in urls]
|
| 182 |
+
for future in as_completed(futures):
|
| 183 |
+
downloads_processed += 1
|
| 184 |
|
| 185 |
+
print(f" Download complete: {downloads_processed} files")
|
| 186 |
+
return True
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
print(f"Error during download: {str(e)}")
|
| 190 |
+
import traceback
|
| 191 |
+
traceback.print_exc()
|
| 192 |
+
return False
|
| 193 |
|
| 194 |
|
| 195 |
# =============================================================================
|
| 196 |
+
# HUGGINGFACE API WRAPPERS
|
| 197 |
# =============================================================================
|
| 198 |
|
| 199 |
+
def is_retryable_error(e):
|
| 200 |
+
"""Check if exception is retryable (rate limit or timeout error)."""
|
| 201 |
+
if isinstance(e, HfHubHTTPError):
|
| 202 |
+
if e.response.status_code == 429:
|
| 203 |
+
return True
|
| 204 |
|
| 205 |
+
if isinstance(e, (requests.exceptions.Timeout,
|
| 206 |
+
requests.exceptions.ReadTimeout,
|
| 207 |
+
requests.exceptions.ConnectTimeout)):
|
| 208 |
+
return True
|
| 209 |
|
| 210 |
+
if isinstance(e, Exception):
|
| 211 |
+
error_str = str(e).lower()
|
| 212 |
+
if 'timeout' in error_str or 'timed out' in error_str:
|
| 213 |
+
return True
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
return False
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
@backoff.on_exception(
|
| 219 |
+
backoff.expo,
|
| 220 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 221 |
+
max_tries=MAX_RETRIES,
|
| 222 |
+
base=300,
|
| 223 |
+
max_value=3600,
|
| 224 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 225 |
+
on_backoff=lambda details: print(
|
| 226 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
|
| 227 |
+
)
|
| 228 |
+
)
|
| 229 |
+
def list_repo_files_with_backoff(api, **kwargs):
|
| 230 |
+
"""Wrapper for api.list_repo_files() with exponential backoff."""
|
| 231 |
+
return api.list_repo_files(**kwargs)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
@backoff.on_exception(
|
| 235 |
+
backoff.expo,
|
| 236 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 237 |
+
max_tries=MAX_RETRIES,
|
| 238 |
+
base=300,
|
| 239 |
+
max_value=3600,
|
| 240 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 241 |
+
on_backoff=lambda details: print(
|
| 242 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
|
| 243 |
+
)
|
| 244 |
+
)
|
| 245 |
+
def hf_hub_download_with_backoff(**kwargs):
|
| 246 |
+
"""Wrapper for hf_hub_download() with exponential backoff."""
|
| 247 |
+
return hf_hub_download(**kwargs)
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
@backoff.on_exception(
|
| 251 |
+
backoff.expo,
|
| 252 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 253 |
+
max_tries=MAX_RETRIES,
|
| 254 |
+
base=300,
|
| 255 |
+
max_value=3600,
|
| 256 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 257 |
+
on_backoff=lambda details: print(
|
| 258 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
|
| 259 |
+
)
|
| 260 |
+
)
|
| 261 |
+
def upload_file_with_backoff(api, **kwargs):
|
| 262 |
+
"""Wrapper for api.upload_file() with exponential backoff."""
|
| 263 |
+
return api.upload_file(**kwargs)
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
+
@backoff.on_exception(
|
| 267 |
+
backoff.expo,
|
| 268 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 269 |
+
max_tries=MAX_RETRIES,
|
| 270 |
+
base=300,
|
| 271 |
+
max_value=3600,
|
| 272 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 273 |
+
on_backoff=lambda details: print(
|
| 274 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
def upload_folder_with_backoff(api, **kwargs):
|
| 278 |
+
"""Wrapper for api.upload_folder() with exponential backoff."""
|
| 279 |
+
return api.upload_folder(**kwargs)
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
+
def get_duckdb_connection():
|
| 283 |
+
"""
|
| 284 |
+
Initialize DuckDB connection with OPTIMIZED memory settings.
|
| 285 |
+
Uses persistent database and reduced memory footprint.
|
| 286 |
+
"""
|
| 287 |
+
conn = duckdb.connect(DUCKDB_CACHE_FILE)
|
| 288 |
|
| 289 |
+
# OPTIMIZED SETTINGS
|
| 290 |
+
conn.execute(f"SET threads TO {DUCKDB_THREADS};")
|
| 291 |
+
conn.execute("SET preserve_insertion_order = false;")
|
| 292 |
+
conn.execute("SET enable_object_cache = true;")
|
| 293 |
+
conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
|
| 294 |
+
conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';") # Per-query limit
|
| 295 |
+
conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';") # Hard cap
|
| 296 |
|
| 297 |
+
return conn
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_LOCAL_PATH):
|
| 301 |
+
"""Generate file path patterns for GHArchive data in date range (only existing files)."""
|
| 302 |
+
file_patterns = []
|
| 303 |
+
missing_dates = set()
|
| 304 |
+
|
| 305 |
+
current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 306 |
+
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 307 |
+
|
| 308 |
+
while current_date <= end_day:
|
| 309 |
+
date_has_files = False
|
| 310 |
+
for hour in range(24):
|
| 311 |
+
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
|
| 312 |
+
if os.path.exists(pattern):
|
| 313 |
+
file_patterns.append(pattern)
|
| 314 |
+
date_has_files = True
|
| 315 |
+
|
| 316 |
+
if not date_has_files:
|
| 317 |
+
missing_dates.add(current_date.strftime('%Y-%m-%d'))
|
| 318 |
+
|
| 319 |
+
current_date += timedelta(days=1)
|
| 320 |
|
| 321 |
+
if missing_dates:
|
| 322 |
+
print(f" ⚠ Skipping {len(missing_dates)} date(s) with no data")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
+
return file_patterns
|
| 325 |
|
| 326 |
|
| 327 |
+
# =============================================================================
|
| 328 |
+
# STREAMING BATCH PROCESSING FOR ISSUES
|
| 329 |
+
# =============================================================================
|
| 330 |
+
|
| 331 |
+
def fetch_all_issue_metadata_streaming(conn, identifiers, start_date, end_date):
|
| 332 |
"""
|
| 333 |
+
OPTIMIZED: Fetch issue metadata using streaming batch processing.
|
| 334 |
+
|
| 335 |
+
Only tracks issues assigned to the agents.
|
| 336 |
|
| 337 |
+
Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage.
|
| 338 |
+
Instead of loading 180 days (4,344 files) at once, processes 7 days at a time.
|
|
|
|
| 339 |
|
| 340 |
+
This prevents OOM errors by:
|
| 341 |
+
1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
|
| 342 |
+
2. Incrementally building the results dictionary
|
| 343 |
+
3. Allowing DuckDB to garbage collect after each batch
|
| 344 |
|
| 345 |
Args:
|
| 346 |
+
conn: DuckDB connection instance
|
| 347 |
+
identifiers: List of GitHub usernames/bot identifiers (~1500)
|
| 348 |
start_date: Start datetime (timezone-aware)
|
| 349 |
end_date: End datetime (timezone-aware)
|
| 350 |
|
| 351 |
Returns:
|
| 352 |
+
Dictionary mapping agent identifier to list of issue metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
"""
|
| 354 |
+
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 355 |
+
metadata_by_agent = defaultdict(list)
|
| 356 |
|
| 357 |
+
# Calculate total batches
|
| 358 |
+
total_days = (end_date - start_date).days
|
| 359 |
+
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
+
# Process in configurable batches
|
| 362 |
+
current_date = start_date
|
| 363 |
+
batch_num = 0
|
| 364 |
+
total_issues = 0
|
|
|
|
| 365 |
|
| 366 |
+
print(f" Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")
|
| 367 |
|
| 368 |
+
while current_date <= end_date:
|
| 369 |
+
batch_num += 1
|
| 370 |
+
batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)
|
| 371 |
|
| 372 |
+
# Get file patterns for THIS BATCH ONLY (not all 180 days)
|
| 373 |
+
file_patterns = generate_file_path_patterns(current_date, batch_end)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
if not file_patterns:
|
| 376 |
+
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
|
| 377 |
+
current_date = batch_end + timedelta(days=1)
|
| 378 |
continue
|
| 379 |
|
| 380 |
+
# Progress indicator
|
| 381 |
+
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)
|
| 382 |
+
|
| 383 |
+
# Build file patterns SQL for THIS BATCH
|
| 384 |
+
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
|
| 385 |
+
|
| 386 |
+
# Query for this batch - IssuesEvent filtered by assignee only
|
| 387 |
+
query = f"""
|
| 388 |
+
WITH issue_events AS (
|
| 389 |
+
SELECT
|
| 390 |
+
CONCAT(
|
| 391 |
+
REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
|
| 392 |
+
'/issues/',
|
| 393 |
+
CAST(payload.issue.number AS VARCHAR)
|
| 394 |
+
) as url,
|
| 395 |
+
payload.issue.assignee.login as assignee,
|
| 396 |
+
created_at as event_time,
|
| 397 |
+
payload.issue.created_at as issue_created_at,
|
| 398 |
+
payload.issue.closed_at as issue_closed_at,
|
| 399 |
+
payload.issue.state_reason as state_reason
|
| 400 |
+
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 401 |
+
WHERE
|
| 402 |
+
type = 'IssuesEvent'
|
| 403 |
+
AND payload.issue.number IS NOT NULL
|
| 404 |
+
AND payload.issue.pull_request IS NULL
|
| 405 |
+
AND payload.issue.assignee.login IN ({identifier_list})
|
| 406 |
+
),
|
| 407 |
+
issue_timeline AS (
|
| 408 |
+
SELECT
|
| 409 |
+
url,
|
| 410 |
+
assignee as agent_identifier,
|
| 411 |
+
MIN(issue_created_at) as created_at,
|
| 412 |
+
MAX(issue_closed_at) as closed_at,
|
| 413 |
+
MAX(state_reason) as state_reason
|
| 414 |
+
FROM issue_events
|
| 415 |
+
GROUP BY url, assignee
|
| 416 |
+
)
|
| 417 |
+
SELECT url, agent_identifier, created_at, closed_at, state_reason
|
| 418 |
+
FROM issue_timeline
|
| 419 |
+
WHERE agent_identifier IS NOT NULL AND created_at IS NOT NULL
|
| 420 |
+
"""
|
| 421 |
|
| 422 |
+
try:
|
| 423 |
+
results = conn.execute(query).fetchall()
|
| 424 |
+
batch_issues = 0
|
| 425 |
+
|
| 426 |
+
# Add results to accumulating dictionary
|
| 427 |
+
for row in results:
|
| 428 |
+
url = row[0]
|
| 429 |
+
agent_identifier = row[1]
|
| 430 |
+
created_at = normalize_date_format(row[2]) if row[2] else None
|
| 431 |
+
closed_at = normalize_date_format(row[3]) if row[3] else None
|
| 432 |
+
state_reason = row[4]
|
| 433 |
+
|
| 434 |
+
if not url or not agent_identifier:
|
| 435 |
+
continue
|
| 436 |
+
|
| 437 |
+
issue_metadata = {
|
| 438 |
+
'url': url,
|
| 439 |
+
'created_at': created_at,
|
| 440 |
+
'closed_at': closed_at,
|
| 441 |
+
'state_reason': state_reason,
|
| 442 |
+
}
|
| 443 |
|
| 444 |
+
metadata_by_agent[agent_identifier].append(issue_metadata)
|
| 445 |
+
batch_issues += 1
|
| 446 |
+
total_issues += 1
|
| 447 |
|
| 448 |
+
print(f"✓ {batch_issues} issues found")
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
+
except Exception as e:
|
| 451 |
+
print(f"\\n ✗ Batch {batch_num} error: {str(e)}")
|
| 452 |
+
import traceback
|
| 453 |
+
traceback.print_exc()
|
| 454 |
|
| 455 |
+
# Move to next batch
|
| 456 |
+
current_date = batch_end + timedelta(days=1)
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
+
# Final summary
|
| 459 |
+
agents_with_data = sum(1 for issues in metadata_by_agent.values() if issues)
|
| 460 |
+
print(f"\\n ✓ Complete: {total_issues} issues found for {agents_with_data}/{len(identifiers)} agents")
|
|
|
|
| 461 |
|
| 462 |
+
return dict(metadata_by_agent)
|
| 463 |
|
|
|
|
|
|
|
| 464 |
|
| 465 |
+
def sync_agents_repo():
|
| 466 |
+
"""
|
| 467 |
+
Sync local bot_data repository with remote using git pull.
|
| 468 |
+
This is MANDATORY to ensure we have the latest bot data.
|
| 469 |
+
Raises exception if sync fails.
|
| 470 |
+
"""
|
| 471 |
+
if not os.path.exists(AGENTS_REPO_LOCAL_PATH):
|
| 472 |
+
error_msg = f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}"
|
| 473 |
+
print(f" ✗ {error_msg}")
|
| 474 |
+
print(f" Please clone it first: git clone https://huggingface.co/datasets/{AGENTS_REPO}")
|
| 475 |
+
raise FileNotFoundError(error_msg)
|
| 476 |
|
| 477 |
+
if not os.path.exists(os.path.join(AGENTS_REPO_LOCAL_PATH, '.git')):
|
| 478 |
+
error_msg = f"{AGENTS_REPO_LOCAL_PATH} exists but is not a git repository"
|
| 479 |
+
print(f" ✗ {error_msg}")
|
| 480 |
+
raise ValueError(error_msg)
|
| 481 |
|
| 482 |
+
try:
|
| 483 |
+
import subprocess
|
| 484 |
+
|
| 485 |
+
# Run git pull with extended timeout due to large repository
|
| 486 |
+
result = subprocess.run(
|
| 487 |
+
['git', 'pull'],
|
| 488 |
+
cwd=AGENTS_REPO_LOCAL_PATH,
|
| 489 |
+
capture_output=True,
|
| 490 |
+
text=True,
|
| 491 |
+
timeout=GIT_SYNC_TIMEOUT
|
| 492 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
|
| 494 |
+
if result.returncode == 0:
|
| 495 |
+
output = result.stdout.strip()
|
| 496 |
+
if "Already up to date" in output or "Already up-to-date" in output:
|
| 497 |
+
print(f" ✓ Repository is up to date")
|
| 498 |
+
else:
|
| 499 |
+
print(f" ✓ Repository synced successfully")
|
| 500 |
+
if output:
|
| 501 |
+
# Print first few lines of output
|
| 502 |
+
lines = output.split('\\n')[:5]
|
| 503 |
+
for line in lines:
|
| 504 |
+
print(f" {line}")
|
| 505 |
return True
|
| 506 |
+
else:
|
| 507 |
+
error_msg = f"Git pull failed: {result.stderr.strip()}"
|
| 508 |
+
print(f" ✗ {error_msg}")
|
| 509 |
+
raise RuntimeError(error_msg)
|
| 510 |
+
|
| 511 |
+
except subprocess.TimeoutExpired:
|
| 512 |
+
error_msg = f"Git pull timed out after {GIT_SYNC_TIMEOUT} seconds"
|
| 513 |
+
print(f" ✗ {error_msg}")
|
| 514 |
+
raise TimeoutError(error_msg)
|
| 515 |
+
except (FileNotFoundError, ValueError, RuntimeError, TimeoutError):
|
| 516 |
+
raise # Re-raise expected exceptions
|
| 517 |
except Exception as e:
|
| 518 |
+
error_msg = f"Error syncing repository: {str(e)}"
|
| 519 |
+
print(f" ✗ {error_msg}")
|
| 520 |
+
raise RuntimeError(error_msg) from e
|
|
|
|
| 521 |
|
| 522 |
|
| 523 |
def load_agents_from_hf():
|
| 524 |
"""
|
| 525 |
+
Load all agent metadata JSON files from local git repository.
|
| 526 |
+
ALWAYS syncs with remote first to ensure we have the latest bot data.
|
|
|
|
| 527 |
"""
|
| 528 |
+
# MANDATORY: Sync with remote first to get latest bot data
|
| 529 |
+
print(f" Syncing bot_data repository to get latest agents...")
|
| 530 |
+
sync_agents_repo() # Will raise exception if sync fails
|
| 531 |
|
| 532 |
+
agents = []
|
|
|
|
| 533 |
|
| 534 |
+
# Scan local directory for JSON files
|
| 535 |
+
if not os.path.exists(AGENTS_REPO_LOCAL_PATH):
|
| 536 |
+
raise FileNotFoundError(f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}")
|
| 537 |
|
| 538 |
+
# Walk through the directory to find all JSON files
|
| 539 |
+
files_processed = 0
|
| 540 |
+
print(f" Loading agent metadata from {AGENTS_REPO_LOCAL_PATH}...")
|
| 541 |
|
| 542 |
+
for root, dirs, files in os.walk(AGENTS_REPO_LOCAL_PATH):
|
| 543 |
+
# Skip .git directory
|
| 544 |
+
if '.git' in root:
|
| 545 |
+
continue
|
| 546 |
+
|
| 547 |
+
for filename in files:
|
| 548 |
+
if not filename.endswith('.json'):
|
| 549 |
+
continue
|
| 550 |
|
| 551 |
+
files_processed += 1
|
| 552 |
+
file_path = os.path.join(root, filename)
|
| 553 |
+
|
| 554 |
+
try:
|
| 555 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 556 |
agent_data = json.load(f)
|
| 557 |
|
| 558 |
+
# Only include public agents
|
| 559 |
+
if agent_data.get('status') != 'public':
|
| 560 |
+
continue
|
| 561 |
|
| 562 |
+
# Extract github_identifier from filename
|
| 563 |
+
github_identifier = filename.replace('.json', '')
|
| 564 |
+
agent_data['github_identifier'] = github_identifier
|
| 565 |
|
| 566 |
+
agents.append(agent_data)
|
| 567 |
|
| 568 |
except Exception as e:
|
| 569 |
+
print(f" ⚠ Error loading {filename}: {str(e)}")
|
| 570 |
continue
|
| 571 |
|
| 572 |
+
print(f" ✓ Loaded {len(agents)} public agents (from {files_processed} total files)")
|
| 573 |
+
return agents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
|
|
|
|
|
|
|
|
|
| 575 |
|
| 576 |
def calculate_issue_stats_from_metadata(metadata_list):
|
| 577 |
+
"""Calculate statistics from a list of issue metadata."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
total_issues = len(metadata_list)
|
| 579 |
+
closed = sum(1 for issue_meta in metadata_list if issue_meta.get('closed_at'))
|
| 580 |
+
resolved = sum(1 for issue_meta in metadata_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
if issue_meta.get('state_reason') == 'completed')
|
| 582 |
|
| 583 |
+
# Resolved rate = resolved / closed (not resolved / total)
|
| 584 |
+
resolved_rate = (resolved / closed * 100) if closed > 0 else 0
|
| 585 |
|
| 586 |
return {
|
| 587 |
'total_issues': total_issues,
|
| 588 |
+
'closed_issues': closed,
|
| 589 |
+
'resolved_issues': resolved,
|
| 590 |
'resolved_rate': round(resolved_rate, 2),
|
| 591 |
}
|
| 592 |
|
| 593 |
|
| 594 |
+
def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
| 595 |
+
"""Calculate monthly metrics for all agents for visualization."""
|
| 596 |
+
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 597 |
|
| 598 |
+
if not all_metadata_dict:
|
| 599 |
+
return {'agents': [], 'months': [], 'data': {}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
|
|
|
|
| 601 |
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 602 |
|
| 603 |
+
for agent_identifier, metadata_list in all_metadata_dict.items():
|
|
|
|
|
|
|
| 604 |
for issue_meta in metadata_list:
|
| 605 |
created_at = issue_meta.get('created_at')
|
| 606 |
+
|
| 607 |
if not created_at:
|
| 608 |
continue
|
| 609 |
|
| 610 |
+
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 611 |
+
|
| 612 |
try:
|
| 613 |
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 614 |
month_key = f"{dt.year}-{dt.month:02d}"
|
|
|
|
| 617 |
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 618 |
continue
|
| 619 |
|
|
|
|
| 620 |
all_months = set()
|
| 621 |
for agent_data in agent_month_data.values():
|
| 622 |
all_months.update(agent_data.keys())
|
| 623 |
months = sorted(list(all_months))
|
| 624 |
|
|
|
|
| 625 |
result_data = {}
|
| 626 |
for agent_name, month_dict in agent_month_data.items():
|
| 627 |
resolved_rates = []
|
| 628 |
total_issues_list = []
|
| 629 |
resolved_issues_list = []
|
| 630 |
+
closed_issues_list = []
|
| 631 |
|
| 632 |
for month in months:
|
| 633 |
issues_in_month = month_dict.get(month, [])
|
| 634 |
|
| 635 |
+
resolved_count = sum(1 for issue in issues_in_month if issue.get('state_reason') == 'completed')
|
| 636 |
+
closed_count = sum(1 for issue in issues_in_month if issue.get('closed_at'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
total_count = len(issues_in_month)
|
| 638 |
|
| 639 |
+
# Resolved rate = resolved / closed (not resolved / total)
|
| 640 |
+
resolved_rate = (resolved_count / closed_count * 100) if closed_count > 0 else None
|
| 641 |
|
| 642 |
resolved_rates.append(resolved_rate)
|
| 643 |
total_issues_list.append(total_count)
|
| 644 |
+
resolved_issues_list.append(resolved_count)
|
| 645 |
+
closed_issues_list.append(closed_count)
|
| 646 |
|
| 647 |
result_data[agent_name] = {
|
| 648 |
'resolved_rates': resolved_rates,
|
| 649 |
'total_issues': total_issues_list,
|
| 650 |
+
'resolved_issues': resolved_issues_list,
|
| 651 |
+
'closed_issues': closed_issues_list
|
| 652 |
}
|
| 653 |
|
| 654 |
agents_list = sorted(list(agent_month_data.keys()))
|
|
|
|
| 660 |
}
|
| 661 |
|
| 662 |
|
| 663 |
+
def construct_leaderboard_from_metadata(all_metadata_dict, agents):
|
| 664 |
+
"""Construct leaderboard from in-memory issue metadata."""
|
| 665 |
+
if not agents:
|
| 666 |
+
print("Error: No agents found")
|
| 667 |
+
return {}
|
| 668 |
|
| 669 |
+
cache_dict = {}
|
|
|
|
|
|
|
| 670 |
|
| 671 |
+
for agent in agents:
|
| 672 |
+
identifier = agent.get('github_identifier')
|
| 673 |
+
agent_name = agent.get('name', 'Unknown')
|
| 674 |
+
|
| 675 |
+
bot_metadata = all_metadata_dict.get(identifier, [])
|
| 676 |
+
stats = calculate_issue_stats_from_metadata(bot_metadata)
|
| 677 |
+
|
| 678 |
+
cache_dict[identifier] = {
|
| 679 |
+
'name': agent_name,
|
| 680 |
+
'website': agent.get('website', 'N/A'),
|
| 681 |
+
'github_identifier': identifier,
|
| 682 |
+
**stats
|
| 683 |
+
}
|
| 684 |
+
|
| 685 |
+
return cache_dict
|
| 686 |
|
| 687 |
+
|
| 688 |
+
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
| 689 |
+
"""Save leaderboard data and monthly metrics to HuggingFace dataset."""
|
| 690 |
try:
|
| 691 |
token = get_hf_token()
|
| 692 |
if not token:
|
| 693 |
raise Exception("No HuggingFace token found")
|
| 694 |
|
| 695 |
api = HfApi(token=token)
|
| 696 |
+
filename = "swe-issue.json"
|
| 697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
combined_data = {
|
| 699 |
+
'last_updated': datetime.now(timezone.utc).isoformat(),
|
| 700 |
+
'leaderboard': leaderboard_dict,
|
| 701 |
+
'monthly_metrics': monthly_metrics,
|
| 702 |
+
'metadata': {
|
| 703 |
+
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
|
|
|
|
| 704 |
}
|
| 705 |
}
|
| 706 |
|
| 707 |
+
with open(filename, 'w') as f:
|
| 708 |
+
json.dump(combined_data, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 709 |
|
| 710 |
+
try:
|
| 711 |
+
upload_file_with_backoff(
|
| 712 |
+
api=api,
|
| 713 |
+
path_or_fileobj=filename,
|
| 714 |
+
path_in_repo=filename,
|
| 715 |
+
repo_id=LEADERBOARD_REPO,
|
| 716 |
+
repo_type="dataset"
|
| 717 |
+
)
|
| 718 |
+
return True
|
| 719 |
+
finally:
|
| 720 |
+
if os.path.exists(filename):
|
| 721 |
+
os.remove(filename)
|
| 722 |
|
| 723 |
except Exception as e:
|
| 724 |
+
print(f"Error saving leaderboard data: {str(e)}")
|
| 725 |
import traceback
|
| 726 |
traceback.print_exc()
|
| 727 |
return False
|
| 728 |
|
| 729 |
|
| 730 |
# =============================================================================
|
| 731 |
+
# MINING FUNCTION
|
| 732 |
# =============================================================================
|
| 733 |
|
| 734 |
def mine_all_agents():
|
| 735 |
"""
|
| 736 |
+
Mine issue metadata for all agents using STREAMING batch processing.
|
| 737 |
+
Downloads GHArchive data, then uses BATCH-based DuckDB queries.
|
| 738 |
"""
|
| 739 |
+
print(f"\\n[1/4] Downloading GHArchive data...")
|
| 740 |
+
|
| 741 |
+
if not download_all_gharchive_data():
|
| 742 |
+
print("Warning: Download had errors, continuing with available data...")
|
| 743 |
+
|
| 744 |
+
print(f"\\n[2/4] Loading agent metadata...")
|
| 745 |
+
|
| 746 |
agents = load_agents_from_hf()
|
| 747 |
if not agents:
|
| 748 |
+
print("Error: No agents found")
|
| 749 |
return
|
| 750 |
|
|
|
|
| 751 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 752 |
if not identifiers:
|
| 753 |
+
print("Error: No valid agent identifiers found")
|
| 754 |
return
|
| 755 |
|
| 756 |
+
print(f"\\n[3/4] Mining issue metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
|
|
|
|
| 758 |
try:
|
| 759 |
+
conn = get_duckdb_connection()
|
| 760 |
except Exception as e:
|
| 761 |
+
print(f"Failed to initialize DuckDB connection: {str(e)}")
|
| 762 |
return
|
| 763 |
|
|
|
|
| 764 |
current_time = datetime.now(timezone.utc)
|
| 765 |
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 766 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 767 |
|
| 768 |
try:
|
| 769 |
+
# USE STREAMING FUNCTION FOR ISSUES
|
| 770 |
+
all_metadata = fetch_all_issue_metadata_streaming(
|
| 771 |
+
conn, identifiers, start_date, end_date
|
|
|
|
| 772 |
)
|
| 773 |
|
| 774 |
+
except Exception as e:
|
| 775 |
+
print(f"Error during DuckDB fetch: {str(e)}")
|
| 776 |
+
import traceback
|
| 777 |
+
traceback.print_exc()
|
| 778 |
+
return
|
| 779 |
+
finally:
|
| 780 |
+
conn.close()
|
| 781 |
+
|
| 782 |
+
print(f"\\n[4/4] Saving leaderboard...")
|
| 783 |
|
| 784 |
+
try:
|
| 785 |
+
leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents)
|
| 786 |
+
monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents)
|
| 787 |
+
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
|
|
|
|
|
|
|
| 788 |
|
| 789 |
except Exception as e:
|
| 790 |
+
print(f"Error saving leaderboard: {str(e)}")
|
| 791 |
import traceback
|
| 792 |
traceback.print_exc()
|
|
|
|
| 793 |
|
| 794 |
+
|
| 795 |
+
# =============================================================================
|
| 796 |
+
# SCHEDULER SETUP
|
| 797 |
+
# =============================================================================
|
| 798 |
+
|
| 799 |
+
def setup_scheduler():
|
| 800 |
+
"""Set up APScheduler to run mining jobs periodically."""
|
| 801 |
+
logging.basicConfig(
|
| 802 |
+
level=logging.INFO,
|
| 803 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 804 |
+
)
|
| 805 |
+
|
| 806 |
+
logging.getLogger('httpx').setLevel(logging.WARNING)
|
| 807 |
+
|
| 808 |
+
scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)
|
| 809 |
+
|
| 810 |
+
trigger = CronTrigger(
|
| 811 |
+
day_of_week=SCHEDULE_DAY_OF_WEEK,
|
| 812 |
+
hour=SCHEDULE_HOUR,
|
| 813 |
+
minute=SCHEDULE_MINUTE,
|
| 814 |
+
timezone=SCHEDULE_TIMEZONE
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
scheduler.add_job(
|
| 818 |
+
mine_all_agents,
|
| 819 |
+
trigger=trigger,
|
| 820 |
+
id='mine_all_agents',
|
| 821 |
+
name='Mine GHArchive data for all agents',
|
| 822 |
+
replace_existing=True
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
from datetime import datetime
|
| 826 |
+
next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
|
| 827 |
+
print(f"Scheduler: Weekly on {SCHEDULE_DAY_OF_WEEK} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
|
| 828 |
+
print(f"Next run: {next_run}\\n")
|
| 829 |
+
|
| 830 |
+
print(f"\\nScheduler started")
|
| 831 |
+
scheduler.start()
|
| 832 |
|
| 833 |
|
| 834 |
# =============================================================================
|
|
|
|
| 836 |
# =============================================================================
|
| 837 |
|
| 838 |
if __name__ == "__main__":
|
| 839 |
+
if SCHEDULE_ENABLED:
|
| 840 |
+
setup_scheduler()
|
| 841 |
+
else:
|
| 842 |
+
mine_all_agents()
|
requirements.txt
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
APScheduler
|
| 2 |
backoff
|
| 3 |
-
|
| 4 |
-
db-dtypes
|
| 5 |
-
google-cloud-bigquery
|
| 6 |
gradio
|
| 7 |
gradio_leaderboard
|
| 8 |
huggingface_hub
|
| 9 |
pandas
|
| 10 |
plotly
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 1 |
APScheduler
|
| 2 |
backoff
|
| 3 |
+
duckdb[all]
|
|
|
|
|
|
|
| 4 |
gradio
|
| 5 |
gradio_leaderboard
|
| 6 |
huggingface_hub
|
| 7 |
pandas
|
| 8 |
plotly
|
| 9 |
+
python-dotenv
|
| 10 |
+
requests
|