refine
Browse files
app.py
CHANGED
|
@@ -938,6 +938,48 @@ def get_hf_token():
|
|
| 938 |
return token
|
| 939 |
|
| 940 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 941 |
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 942 |
"""
|
| 943 |
Upload file to HuggingFace with exponential backoff retry logic.
|
|
@@ -1025,6 +1067,78 @@ def save_agent_to_hf(data):
|
|
| 1025 |
# DATA MANAGEMENT
|
| 1026 |
# =============================================================================
|
| 1027 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1028 |
def mine_all_agents():
|
| 1029 |
"""
|
| 1030 |
Mine issue metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
|
|
@@ -1122,6 +1236,13 @@ def mine_all_agents():
|
|
| 1122 |
print(f" BigQuery queries executed: 1")
|
| 1123 |
print(f"{'='*80}\n")
|
| 1124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1125 |
|
| 1126 |
def construct_leaderboard_from_metadata():
|
| 1127 |
"""
|
|
@@ -1183,7 +1304,37 @@ def create_monthly_metrics_plot():
|
|
| 1183 |
Each agent gets a unique color for both their line and bars.
|
| 1184 |
Shows only top 5 agents by total issue count.
|
| 1185 |
"""
|
| 1186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1187 |
|
| 1188 |
if not metrics['agents'] or not metrics['months']:
|
| 1189 |
# Return an empty figure with a message
|
|
@@ -1292,11 +1443,19 @@ def create_monthly_metrics_plot():
|
|
| 1292 |
|
| 1293 |
def get_leaderboard_dataframe():
|
| 1294 |
"""
|
| 1295 |
-
|
|
|
|
| 1296 |
Returns formatted DataFrame sorted by total issues.
|
| 1297 |
"""
|
| 1298 |
-
#
|
| 1299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1300 |
|
| 1301 |
if not cache_dict:
|
| 1302 |
# Return empty DataFrame with correct columns if no data
|
|
|
|
| 938 |
return token
|
| 939 |
|
| 940 |
|
| 941 |
+
def load_cached_leaderboard_and_metrics():
|
| 942 |
+
"""
|
| 943 |
+
Load cached leaderboard and monthly metrics data from SWE-Arena/swe_leaderboards dataset.
|
| 944 |
+
This is much faster than constructing from scratch on every app launch.
|
| 945 |
+
|
| 946 |
+
Returns:
|
| 947 |
+
dict: {
|
| 948 |
+
'leaderboard': dict of agent stats,
|
| 949 |
+
'monthly_metrics': dict with agents, months, and data,
|
| 950 |
+
'metadata': dict with last_updated, time_frame_days, total_agents
|
| 951 |
+
}
|
| 952 |
+
Returns None if cache doesn't exist or fails to load.
|
| 953 |
+
"""
|
| 954 |
+
try:
|
| 955 |
+
token = get_hf_token()
|
| 956 |
+
|
| 957 |
+
print("📥 Loading cached leaderboard and metrics from HuggingFace...")
|
| 958 |
+
|
| 959 |
+
# Download cached file
|
| 960 |
+
cached_path = hf_hub_download(
|
| 961 |
+
repo_id="SWE-Arena/swe_leaderboards",
|
| 962 |
+
filename="swe-issue.json",
|
| 963 |
+
repo_type="dataset",
|
| 964 |
+
token=token
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
# Load JSON data
|
| 968 |
+
with open(cached_path, 'r', encoding='utf-8') as f:
|
| 969 |
+
data = json.load(f)
|
| 970 |
+
|
| 971 |
+
print(f" ✓ Loaded cached data (last updated: {data.get('metadata', {}).get('last_updated', 'Unknown')})")
|
| 972 |
+
print(f" ✓ Leaderboard entries: {len(data.get('leaderboard', {}))}")
|
| 973 |
+
print(f" ✓ Monthly metrics for: {len(data.get('monthly_metrics', {}).get('agents', []))} agents")
|
| 974 |
+
|
| 975 |
+
return data
|
| 976 |
+
|
| 977 |
+
except Exception as e:
|
| 978 |
+
print(f"⚠️ Could not load cached data: {str(e)}")
|
| 979 |
+
print(f" Falling back to constructing from issue metadata...")
|
| 980 |
+
return None
|
| 981 |
+
|
| 982 |
+
|
| 983 |
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 984 |
"""
|
| 985 |
Upload file to HuggingFace with exponential backoff retry logic.
|
|
|
|
| 1067 |
# DATA MANAGEMENT
|
| 1068 |
# =============================================================================
|
| 1069 |
|
| 1070 |
+
def save_leaderboard_and_metrics_to_hf():
|
| 1071 |
+
"""
|
| 1072 |
+
Save leaderboard data and monthly metrics to SWE-Arena/swe_leaderboards dataset.
|
| 1073 |
+
Creates a comprehensive JSON file with both leaderboard stats and monthly metrics.
|
| 1074 |
+
If the file exists, it will be overwritten.
|
| 1075 |
+
|
| 1076 |
+
Returns:
|
| 1077 |
+
bool: True if successful, False otherwise
|
| 1078 |
+
"""
|
| 1079 |
+
import io
|
| 1080 |
+
|
| 1081 |
+
try:
|
| 1082 |
+
token = get_hf_token()
|
| 1083 |
+
if not token:
|
| 1084 |
+
raise Exception("No HuggingFace token found")
|
| 1085 |
+
|
| 1086 |
+
api = HfApi(token=token)
|
| 1087 |
+
|
| 1088 |
+
print(f"\n{'='*80}")
|
| 1089 |
+
print(f"📊 Preparing leaderboard and metrics data for upload...")
|
| 1090 |
+
print(f"{'='*80}\n")
|
| 1091 |
+
|
| 1092 |
+
# Get leaderboard data
|
| 1093 |
+
print(" Constructing leaderboard data...")
|
| 1094 |
+
leaderboard_data = construct_leaderboard_from_metadata()
|
| 1095 |
+
|
| 1096 |
+
# Get monthly metrics data (all agents, not just top N)
|
| 1097 |
+
print(" Calculating monthly metrics...")
|
| 1098 |
+
monthly_metrics = calculate_monthly_metrics_by_agent(top_n=None)
|
| 1099 |
+
|
| 1100 |
+
# Combine into a single structure
|
| 1101 |
+
combined_data = {
|
| 1102 |
+
"leaderboard": leaderboard_data,
|
| 1103 |
+
"monthly_metrics": monthly_metrics,
|
| 1104 |
+
"metadata": {
|
| 1105 |
+
"last_updated": datetime.now(timezone.utc).isoformat(),
|
| 1106 |
+
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
|
| 1107 |
+
"total_agents": len(leaderboard_data)
|
| 1108 |
+
}
|
| 1109 |
+
}
|
| 1110 |
+
|
| 1111 |
+
print(f" Leaderboard entries: {len(leaderboard_data)}")
|
| 1112 |
+
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
|
| 1113 |
+
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1114 |
+
|
| 1115 |
+
# Convert to JSON and create file-like object
|
| 1116 |
+
json_content = json.dumps(combined_data, indent=2)
|
| 1117 |
+
file_like_object = io.BytesIO(json_content.encode('utf-8'))
|
| 1118 |
+
|
| 1119 |
+
# Upload to HuggingFace (will overwrite if exists)
|
| 1120 |
+
print(f"\n🤗 Uploading to SWE-Arena/swe_leaderboards...")
|
| 1121 |
+
api.upload_file(
|
| 1122 |
+
path_or_fileobj=file_like_object,
|
| 1123 |
+
path_in_repo="swe-issue.json",
|
| 1124 |
+
repo_id="SWE-Arena/swe_leaderboards",
|
| 1125 |
+
repo_type="dataset",
|
| 1126 |
+
token=token,
|
| 1127 |
+
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
print(f" ✓ Successfully uploaded swe-issue.json")
|
| 1131 |
+
print(f"{'='*80}\n")
|
| 1132 |
+
|
| 1133 |
+
return True
|
| 1134 |
+
|
| 1135 |
+
except Exception as e:
|
| 1136 |
+
print(f"✗ Error saving leaderboard and metrics: {str(e)}")
|
| 1137 |
+
import traceback
|
| 1138 |
+
traceback.print_exc()
|
| 1139 |
+
return False
|
| 1140 |
+
|
| 1141 |
+
|
| 1142 |
def mine_all_agents():
|
| 1143 |
"""
|
| 1144 |
Mine issue metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
|
|
|
|
| 1236 |
print(f" BigQuery queries executed: 1")
|
| 1237 |
print(f"{'='*80}\n")
|
| 1238 |
|
| 1239 |
+
# After mining is complete, save leaderboard and metrics to HuggingFace
|
| 1240 |
+
print(f"📤 Uploading leaderboard and metrics data...")
|
| 1241 |
+
if save_leaderboard_and_metrics_to_hf():
|
| 1242 |
+
print(f"✓ Leaderboard and metrics successfully uploaded to SWE-Arena/swe_leaderboards")
|
| 1243 |
+
else:
|
| 1244 |
+
print(f"⚠️ Failed to upload leaderboard and metrics data")
|
| 1245 |
+
|
| 1246 |
|
| 1247 |
def construct_leaderboard_from_metadata():
|
| 1248 |
"""
|
|
|
|
| 1304 |
Each agent gets a unique color for both their line and bars.
|
| 1305 |
Shows only top 5 agents by total issue count.
|
| 1306 |
"""
|
| 1307 |
+
# Try to load from cache first
|
| 1308 |
+
cached_data = load_cached_leaderboard_and_metrics()
|
| 1309 |
+
|
| 1310 |
+
if cached_data and 'monthly_metrics' in cached_data:
|
| 1311 |
+
# Use cached monthly metrics
|
| 1312 |
+
all_metrics = cached_data['monthly_metrics']
|
| 1313 |
+
|
| 1314 |
+
# Filter to top 5 agents by total issue count
|
| 1315 |
+
if all_metrics.get('agents') and all_metrics.get('data'):
|
| 1316 |
+
# Calculate total issues for each agent
|
| 1317 |
+
agent_totals = []
|
| 1318 |
+
for agent_name in all_metrics['agents']:
|
| 1319 |
+
total_issues = sum(all_metrics['data'][agent_name]['total_issues'])
|
| 1320 |
+
agent_totals.append((agent_name, total_issues))
|
| 1321 |
+
|
| 1322 |
+
# Sort and take top 5
|
| 1323 |
+
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 1324 |
+
top_agents = [agent_name for agent_name, _ in agent_totals[:5]]
|
| 1325 |
+
|
| 1326 |
+
# Filter metrics to only include top agents
|
| 1327 |
+
metrics = {
|
| 1328 |
+
'agents': top_agents,
|
| 1329 |
+
'months': all_metrics['months'],
|
| 1330 |
+
'data': {agent: all_metrics['data'][agent] for agent in top_agents if agent in all_metrics['data']}
|
| 1331 |
+
}
|
| 1332 |
+
else:
|
| 1333 |
+
metrics = all_metrics
|
| 1334 |
+
else:
|
| 1335 |
+
# Fallback: Calculate from issue metadata
|
| 1336 |
+
print(" Calculating monthly metrics from issue metadata...")
|
| 1337 |
+
metrics = calculate_monthly_metrics_by_agent(top_n=5)
|
| 1338 |
|
| 1339 |
if not metrics['agents'] or not metrics['months']:
|
| 1340 |
# Return an empty figure with a message
|
|
|
|
| 1443 |
|
| 1444 |
def get_leaderboard_dataframe():
|
| 1445 |
"""
|
| 1446 |
+
Load leaderboard from cached data and convert to pandas DataFrame for display.
|
| 1447 |
+
Falls back to constructing from issue metadata if cache is unavailable.
|
| 1448 |
Returns formatted DataFrame sorted by total issues.
|
| 1449 |
"""
|
| 1450 |
+
# Try to load from cache first
|
| 1451 |
+
cached_data = load_cached_leaderboard_and_metrics()
|
| 1452 |
+
|
| 1453 |
+
if cached_data and 'leaderboard' in cached_data:
|
| 1454 |
+
cache_dict = cached_data['leaderboard']
|
| 1455 |
+
else:
|
| 1456 |
+
# Fallback: Construct leaderboard from metadata
|
| 1457 |
+
print(" Constructing leaderboard from issue metadata...")
|
| 1458 |
+
cache_dict = construct_leaderboard_from_metadata()
|
| 1459 |
|
| 1460 |
if not cache_dict:
|
| 1461 |
# Return empty DataFrame with correct columns if no data
|
msr.py
CHANGED
|
@@ -21,6 +21,7 @@ load_dotenv()
|
|
| 21 |
|
| 22 |
AGENTS_REPO = "SWE-Arena/swe_agents"
|
| 23 |
ISSUE_METADATA_REPO = "SWE-Arena/issue_metadata"
|
|
|
|
| 24 |
LEADERBOARD_TIME_FRAME_DAYS = 3 # Time frame for leaderboard
|
| 25 |
|
| 26 |
# =============================================================================
|
|
@@ -464,6 +465,224 @@ def load_agents_from_hf():
|
|
| 464 |
return []
|
| 465 |
|
| 466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
# =============================================================================
|
| 468 |
# MAIN MINING FUNCTION
|
| 469 |
# =============================================================================
|
|
@@ -562,6 +781,13 @@ def mine_all_agents():
|
|
| 562 |
print(f" BigQuery queries executed: 1")
|
| 563 |
print(f"{'='*80}\n")
|
| 564 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
|
| 566 |
# =============================================================================
|
| 567 |
# ENTRY POINT
|
|
|
|
| 21 |
|
| 22 |
AGENTS_REPO = "SWE-Arena/swe_agents"
|
| 23 |
ISSUE_METADATA_REPO = "SWE-Arena/issue_metadata"
|
| 24 |
+
LEADERBOARD_REPO = "SWE-Arena/swe_leaderboards"
|
| 25 |
LEADERBOARD_TIME_FRAME_DAYS = 3 # Time frame for leaderboard
|
| 26 |
|
| 27 |
# =============================================================================
|
|
|
|
| 465 |
return []
|
| 466 |
|
| 467 |
|
| 468 |
+
# =============================================================================
|
| 469 |
+
# LEADERBOARD CALCULATION FUNCTIONS
|
| 470 |
+
# =============================================================================
|
| 471 |
+
|
| 472 |
+
def calculate_issue_stats_from_metadata(metadata_list):
|
| 473 |
+
"""
|
| 474 |
+
Calculate statistics from a list of issue metadata.
|
| 475 |
+
|
| 476 |
+
Returns:
|
| 477 |
+
dict: Issue statistics including total, closed, resolved counts and rate
|
| 478 |
+
"""
|
| 479 |
+
total_issues = len(metadata_list)
|
| 480 |
+
|
| 481 |
+
# Count closed issues (those with closed_at timestamp)
|
| 482 |
+
closed_issues = sum(1 for issue_meta in metadata_list
|
| 483 |
+
if issue_meta.get('closed_at') is not None)
|
| 484 |
+
|
| 485 |
+
# Count completed issues (subset of closed issues with state_reason="completed")
|
| 486 |
+
completed = sum(1 for issue_meta in metadata_list
|
| 487 |
+
if issue_meta.get('state_reason') == 'completed')
|
| 488 |
+
|
| 489 |
+
# Calculate resolved rate as: completed / closed (not completed / total)
|
| 490 |
+
resolved_rate = (completed / closed_issues * 100) if closed_issues > 0 else 0
|
| 491 |
+
|
| 492 |
+
return {
|
| 493 |
+
'total_issues': total_issues,
|
| 494 |
+
'closed_issues': closed_issues,
|
| 495 |
+
'resolved_issues': completed,
|
| 496 |
+
'resolved_rate': round(resolved_rate, 2),
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def calculate_monthly_metrics(all_metadata, agents):
|
| 501 |
+
"""
|
| 502 |
+
Calculate monthly metrics for all agents for visualization.
|
| 503 |
+
|
| 504 |
+
Args:
|
| 505 |
+
all_metadata: Dictionary mapping agent_identifier to list of issue metadata
|
| 506 |
+
agents: List of agent dictionaries with metadata
|
| 507 |
+
|
| 508 |
+
Returns:
|
| 509 |
+
dict: {
|
| 510 |
+
'agents': list of agent names,
|
| 511 |
+
'months': list of month labels (e.g., '2025-01'),
|
| 512 |
+
'data': {
|
| 513 |
+
agent_name: {
|
| 514 |
+
'resolved_rates': list of resolved rates by month,
|
| 515 |
+
'total_issues': list of issue counts by month,
|
| 516 |
+
'resolved_issues': list of resolved issue counts by month
|
| 517 |
+
}
|
| 518 |
+
}
|
| 519 |
+
}
|
| 520 |
+
"""
|
| 521 |
+
# Create mapping from agent_identifier to agent_name
|
| 522 |
+
identifier_to_name = {
|
| 523 |
+
agent.get('github_identifier'): agent.get('name', agent.get('agent_name', agent.get('github_identifier')))
|
| 524 |
+
for agent in agents if agent.get('github_identifier')
|
| 525 |
+
}
|
| 526 |
+
|
| 527 |
+
# Group by agent and month
|
| 528 |
+
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 529 |
+
|
| 530 |
+
for identifier, metadata_list in all_metadata.items():
|
| 531 |
+
agent_name = identifier_to_name.get(identifier, identifier)
|
| 532 |
+
|
| 533 |
+
for issue_meta in metadata_list:
|
| 534 |
+
created_at = issue_meta.get('created_at')
|
| 535 |
+
if not created_at:
|
| 536 |
+
continue
|
| 537 |
+
|
| 538 |
+
try:
|
| 539 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 540 |
+
month_key = f"{dt.year}-{dt.month:02d}"
|
| 541 |
+
agent_month_data[agent_name][month_key].append(issue_meta)
|
| 542 |
+
except Exception as e:
|
| 543 |
+
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 544 |
+
continue
|
| 545 |
+
|
| 546 |
+
# Get all unique months and sort them
|
| 547 |
+
all_months = set()
|
| 548 |
+
for agent_data in agent_month_data.values():
|
| 549 |
+
all_months.update(agent_data.keys())
|
| 550 |
+
months = sorted(list(all_months))
|
| 551 |
+
|
| 552 |
+
# Calculate metrics for each agent and month
|
| 553 |
+
result_data = {}
|
| 554 |
+
for agent_name, month_dict in agent_month_data.items():
|
| 555 |
+
resolved_rates = []
|
| 556 |
+
total_issues_list = []
|
| 557 |
+
resolved_issues_list = []
|
| 558 |
+
|
| 559 |
+
for month in months:
|
| 560 |
+
issues_in_month = month_dict.get(month, [])
|
| 561 |
+
|
| 562 |
+
# Count completed issues (those with state_reason="completed")
|
| 563 |
+
completed_count = sum(1 for issue in issues_in_month if issue.get('state_reason') == 'completed')
|
| 564 |
+
|
| 565 |
+
# Count closed issues (those with closed_at timestamp)
|
| 566 |
+
closed_count = sum(1 for issue in issues_in_month if issue.get('closed_at') is not None)
|
| 567 |
+
|
| 568 |
+
# Total issues created in this month
|
| 569 |
+
total_count = len(issues_in_month)
|
| 570 |
+
|
| 571 |
+
# Calculate resolved rate as: completed / closed (not completed / total)
|
| 572 |
+
resolved_rate = (completed_count / closed_count * 100) if closed_count > 0 else None
|
| 573 |
+
|
| 574 |
+
resolved_rates.append(resolved_rate)
|
| 575 |
+
total_issues_list.append(total_count)
|
| 576 |
+
resolved_issues_list.append(completed_count)
|
| 577 |
+
|
| 578 |
+
result_data[agent_name] = {
|
| 579 |
+
'resolved_rates': resolved_rates,
|
| 580 |
+
'total_issues': total_issues_list,
|
| 581 |
+
'resolved_issues': resolved_issues_list
|
| 582 |
+
}
|
| 583 |
+
|
| 584 |
+
agents_list = sorted(list(agent_month_data.keys()))
|
| 585 |
+
|
| 586 |
+
return {
|
| 587 |
+
'agents': agents_list,
|
| 588 |
+
'months': months,
|
| 589 |
+
'data': result_data
|
| 590 |
+
}
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def save_leaderboard_and_metrics_to_hf(all_metadata, agents):
|
| 594 |
+
"""
|
| 595 |
+
Save leaderboard data and monthly metrics to SWE-Arena/swe_leaderboards dataset.
|
| 596 |
+
Creates a comprehensive JSON file with both leaderboard stats and monthly metrics.
|
| 597 |
+
If the file exists, it will be overwritten.
|
| 598 |
+
|
| 599 |
+
Args:
|
| 600 |
+
all_metadata: Dictionary mapping agent_identifier to list of issue metadata
|
| 601 |
+
agents: List of agent dictionaries with metadata
|
| 602 |
+
|
| 603 |
+
Returns:
|
| 604 |
+
bool: True if successful, False otherwise
|
| 605 |
+
"""
|
| 606 |
+
import io
|
| 607 |
+
|
| 608 |
+
try:
|
| 609 |
+
token = get_hf_token()
|
| 610 |
+
if not token:
|
| 611 |
+
raise Exception("No HuggingFace token found")
|
| 612 |
+
|
| 613 |
+
api = HfApi(token=token)
|
| 614 |
+
|
| 615 |
+
print(f"\n{'='*80}")
|
| 616 |
+
print(f"📊 Preparing leaderboard and metrics data for upload...")
|
| 617 |
+
print(f"{'='*80}\n")
|
| 618 |
+
|
| 619 |
+
# Build leaderboard data
|
| 620 |
+
print(" Constructing leaderboard data...")
|
| 621 |
+
leaderboard_data = {}
|
| 622 |
+
|
| 623 |
+
for agent in agents:
|
| 624 |
+
identifier = agent.get('github_identifier')
|
| 625 |
+
agent_name = agent.get('name', agent.get('agent_name', 'Unknown'))
|
| 626 |
+
|
| 627 |
+
if not identifier:
|
| 628 |
+
continue
|
| 629 |
+
|
| 630 |
+
metadata = all_metadata.get(identifier, [])
|
| 631 |
+
stats = calculate_issue_stats_from_metadata(metadata)
|
| 632 |
+
|
| 633 |
+
leaderboard_data[identifier] = {
|
| 634 |
+
'agent_name': agent_name,
|
| 635 |
+
'website': agent.get('website', 'N/A'),
|
| 636 |
+
'github_identifier': identifier,
|
| 637 |
+
**stats
|
| 638 |
+
}
|
| 639 |
+
|
| 640 |
+
# Get monthly metrics data
|
| 641 |
+
print(" Calculating monthly metrics...")
|
| 642 |
+
monthly_metrics = calculate_monthly_metrics(all_metadata, agents)
|
| 643 |
+
|
| 644 |
+
# Combine into a single structure
|
| 645 |
+
combined_data = {
|
| 646 |
+
"leaderboard": leaderboard_data,
|
| 647 |
+
"monthly_metrics": monthly_metrics,
|
| 648 |
+
"metadata": {
|
| 649 |
+
"last_updated": datetime.now(timezone.utc).isoformat(),
|
| 650 |
+
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
|
| 651 |
+
"total_agents": len(leaderboard_data)
|
| 652 |
+
}
|
| 653 |
+
}
|
| 654 |
+
|
| 655 |
+
print(f" Leaderboard entries: {len(leaderboard_data)}")
|
| 656 |
+
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
|
| 657 |
+
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 658 |
+
|
| 659 |
+
# Convert to JSON and create file-like object
|
| 660 |
+
json_content = json.dumps(combined_data, indent=2)
|
| 661 |
+
file_like_object = io.BytesIO(json_content.encode('utf-8'))
|
| 662 |
+
|
| 663 |
+
# Upload to HuggingFace (will overwrite if exists)
|
| 664 |
+
print(f"\n🤗 Uploading to {LEADERBOARD_REPO}...")
|
| 665 |
+
api.upload_file(
|
| 666 |
+
path_or_fileobj=file_like_object,
|
| 667 |
+
path_in_repo="swe-issue.json",
|
| 668 |
+
repo_id=LEADERBOARD_REPO,
|
| 669 |
+
repo_type="dataset",
|
| 670 |
+
token=token,
|
| 671 |
+
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
print(f" ✓ Successfully uploaded swe-issue.json")
|
| 675 |
+
print(f"{'='*80}\n")
|
| 676 |
+
|
| 677 |
+
return True
|
| 678 |
+
|
| 679 |
+
except Exception as e:
|
| 680 |
+
print(f"✗ Error saving leaderboard and metrics: {str(e)}")
|
| 681 |
+
import traceback
|
| 682 |
+
traceback.print_exc()
|
| 683 |
+
return False
|
| 684 |
+
|
| 685 |
+
|
| 686 |
# =============================================================================
|
| 687 |
# MAIN MINING FUNCTION
|
| 688 |
# =============================================================================
|
|
|
|
| 781 |
print(f" BigQuery queries executed: 1")
|
| 782 |
print(f"{'='*80}\n")
|
| 783 |
|
| 784 |
+
# After mining is complete, save leaderboard and metrics to HuggingFace
|
| 785 |
+
print(f"📤 Uploading leaderboard and metrics data...")
|
| 786 |
+
if save_leaderboard_and_metrics_to_hf(all_metadata, agents):
|
| 787 |
+
print(f"✓ Leaderboard and metrics successfully uploaded to {LEADERBOARD_REPO}")
|
| 788 |
+
else:
|
| 789 |
+
print(f"⚠️ Failed to upload leaderboard and metrics data")
|
| 790 |
+
|
| 791 |
|
| 792 |
# =============================================================================
|
| 793 |
# ENTRY POINT
|