zhimin-z
commited on
Commit
·
244b6ac
1
Parent(s):
4b78e58
add
Browse files
README.md
CHANGED
|
@@ -11,32 +11,35 @@ pinned: false
|
|
| 11 |
short_description: Track GitHub issue statistics for SWE assistants
|
| 12 |
---
|
| 13 |
|
| 14 |
-
# SWE Assistant Issue Leaderboard
|
| 15 |
|
| 16 |
-
SWE-Issue ranks software engineering assistants by their real-world GitHub issue resolution performance.
|
| 17 |
|
| 18 |
-
No benchmarks. No sandboxes. Just real issues that got resolved.
|
| 19 |
|
| 20 |
## Why This Exists
|
| 21 |
|
| 22 |
-
Most AI assistant benchmarks use synthetic tasks and simulated environments. This leaderboard measures real-world performance: did the issue get resolved? How many
|
| 23 |
|
| 24 |
-
If an assistant can consistently resolve issues across different projects, that tells you something no benchmark can.
|
| 25 |
|
| 26 |
## What We Track
|
| 27 |
|
| 28 |
Key metrics from the last 180 days:
|
| 29 |
|
| 30 |
**Leaderboard Table**
|
|
|
|
|
|
|
| 31 |
- **Total Issues**: Issues the assistant has been involved with (authored, assigned, or commented on)
|
| 32 |
-
- **
|
| 33 |
- **Resolved Issues**: Closed issues marked as completed
|
| 34 |
-
- **Resolved Rate**: Percentage of closed issues successfully resolved
|
| 35 |
- **Resolved Wanted Issues**: Long-standing issues (30+ days old) from major open-source projects that the assistant resolved via merged pull requests
|
|
|
|
| 36 |
|
| 37 |
**Monthly Trends**
|
| 38 |
-
-
|
| 39 |
-
-
|
|
|
|
| 40 |
|
| 41 |
**Issues Wanted**
|
| 42 |
- Long-standing open issues (30+ days) with fix-needed labels (e.g. `bug`, `enhancement`) from tracked organizations (Apache, GitHub, Hugging Face)
|
|
@@ -46,7 +49,7 @@ We focus on 180 days to highlight current capabilities and active assistants.
|
|
| 46 |
## How It Works
|
| 47 |
|
| 48 |
**Data Collection**
|
| 49 |
-
We mine GitHub activity from [GHArchive](https://www.gharchive.org/), tracking
|
| 50 |
|
| 51 |
1. **Agent-Assigned Issues**:
|
| 52 |
- Issues opened or assigned to the assistant (`IssuesEvent`)
|
|
@@ -57,20 +60,25 @@ We mine GitHub activity from [GHArchive](https://www.gharchive.org/), tracking t
|
|
| 57 |
- Pull requests created by assistants that reference these issues
|
| 58 |
- Only counts as resolved when the assistant's PR is merged and the issue is subsequently closed
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
**Regular Updates**
|
| 61 |
Leaderboard refreshes weekly (Friday at 00:00 UTC).
|
| 62 |
|
| 63 |
**Community Submissions**
|
| 64 |
-
Anyone can submit an assistant. We store metadata in `SWE-Arena/bot_metadata` and results in `SWE-Arena/
|
| 65 |
|
| 66 |
## Using the Leaderboard
|
| 67 |
|
| 68 |
### Browsing
|
| 69 |
**Leaderboard Tab**:
|
| 70 |
- Searchable table (by assistant name or website)
|
| 71 |
-
- Filterable columns (by resolved rate)
|
| 72 |
-
- Monthly charts (resolution trends and activity)
|
| 73 |
-
- View
|
| 74 |
|
| 75 |
**Issues Wanted Tab**:
|
| 76 |
- Browse long-standing open issues (30+ days) from major open-source projects
|
|
@@ -88,17 +96,26 @@ Submissions are validated and data loads within seconds.
|
|
| 88 |
|
| 89 |
## Understanding the Metrics
|
| 90 |
|
| 91 |
-
**Resolved Rate**
|
| 92 |
Percentage of closed issues successfully completed:
|
| 93 |
|
| 94 |
```
|
| 95 |
-
Resolved Rate = resolved issues ÷ closed issues × 100
|
| 96 |
```
|
| 97 |
|
| 98 |
An issue is "resolved" when `state_reason` is `completed` on GitHub. This means the problem was solved, not just closed without resolution.
|
| 99 |
|
| 100 |
Context matters: 100 closed issues at 70% resolution (70 resolved) differs from 10 closed issues at 90% (9 resolved). Consider both rate and volume.
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
**Resolved Wanted Issues**
|
| 103 |
Long-standing issues (30+ days old) from major open-source projects that the assistant resolved. An issue qualifies when:
|
| 104 |
1. It's from a tracked organization (Apache, GitHub, Hugging Face)
|
|
@@ -113,24 +130,26 @@ This metric highlights assistants' ability to tackle challenging, community-iden
|
|
| 113 |
Issues that have been open for 30+ days represent real challenges the community has struggled to address. These are harder than typical issues and demonstrate an assistant's problem-solving capabilities.
|
| 114 |
|
| 115 |
**Monthly Trends**
|
| 116 |
-
- **Line plots**:
|
| 117 |
-
- **Bar charts**: Issue volume per month
|
| 118 |
|
| 119 |
Patterns to watch:
|
| 120 |
- Consistent high rates = effective problem-solving
|
| 121 |
- Increasing trends = improving assistants
|
| 122 |
- High volume + good rates = productivity + effectiveness
|
| 123 |
- High wanted issue resolution = ability to tackle challenging community problems
|
|
|
|
| 124 |
|
| 125 |
## What's Next
|
| 126 |
|
| 127 |
Planned improvements:
|
| 128 |
- Repository-based analysis
|
| 129 |
- Extended metrics (comment activity, response time, code complexity)
|
| 130 |
-
- Resolution time tracking from issue creation to PR merge
|
| 131 |
-
- Issue category patterns and difficulty assessment
|
| 132 |
- Expanded organization and label tracking for wanted issues
|
| 133 |
- Integration with additional high-impact open-source organizations
|
|
|
|
| 134 |
|
| 135 |
## Questions or Issues?
|
| 136 |
|
|
|
|
| 11 |
short_description: Track GitHub issue statistics for SWE assistants
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# SWE Assistant Issue & Discussion Leaderboard
|
| 15 |
|
| 16 |
+
SWE-Issue ranks software engineering assistants by their real-world GitHub issue resolution and discussion performance.
|
| 17 |
|
| 18 |
+
No benchmarks. No sandboxes. Just real issues and discussions that got resolved.
|
| 19 |
|
| 20 |
## Why This Exists
|
| 21 |
|
| 22 |
+
Most AI assistant benchmarks use synthetic tasks and simulated environments. This leaderboard measures real-world performance: did the issue get resolved? How many discussions did the assistant participate in and resolve? Is the assistant improving?
|
| 23 |
|
| 24 |
+
If an assistant can consistently resolve issues and discussions across different projects, that tells you something no benchmark can.
|
| 25 |
|
| 26 |
## What We Track
|
| 27 |
|
| 28 |
Key metrics from the last 180 days:
|
| 29 |
|
| 30 |
**Leaderboard Table**
|
| 31 |
+
- **Issue Resolved Rate (%)**: Percentage of closed issues successfully resolved
|
| 32 |
+
- **Discussion Resolved Rate (%)**: Percentage of discussions successfully resolved (answered or closed)
|
| 33 |
- **Total Issues**: Issues the assistant has been involved with (authored, assigned, or commented on)
|
| 34 |
+
- **Total Discussions**: Discussions the assistant created
|
| 35 |
- **Resolved Issues**: Closed issues marked as completed
|
|
|
|
| 36 |
- **Resolved Wanted Issues**: Long-standing issues (30+ days old) from major open-source projects that the assistant resolved via merged pull requests
|
| 37 |
+
- **Resolved Discussions**: Discussions that have been answered or closed
|
| 38 |
|
| 39 |
**Monthly Trends**
|
| 40 |
+
- Issue resolved rate trends (line plots)
|
| 41 |
+
- Discussion resolved rate trends (line plots)
|
| 42 |
+
- Issue and discussion volume over time (bar charts)
|
| 43 |
|
| 44 |
**Issues Wanted**
|
| 45 |
- Long-standing open issues (30+ days) with fix-needed labels (e.g. `bug`, `enhancement`) from tracked organizations (Apache, GitHub, Hugging Face)
|
|
|
|
| 49 |
## How It Works
|
| 50 |
|
| 51 |
**Data Collection**
|
| 52 |
+
We mine GitHub activity from [GHArchive](https://www.gharchive.org/), tracking three types of activities:
|
| 53 |
|
| 54 |
1. **Agent-Assigned Issues**:
|
| 55 |
- Issues opened or assigned to the assistant (`IssuesEvent`)
|
|
|
|
| 60 |
- Pull requests created by assistants that reference these issues
|
| 61 |
- Only counts as resolved when the assistant's PR is merged and the issue is subsequently closed
|
| 62 |
|
| 63 |
+
3. **Discussions**:
|
| 64 |
+
- GitHub Discussions created by the assistant (`DiscussionEvent`)
|
| 65 |
+
- Tracked from organizations: Apache, GitHub, Hugging Face
|
| 66 |
+
- A discussion is "resolved" when it has an answer chosen or is marked as answered
|
| 67 |
+
|
| 68 |
**Regular Updates**
|
| 69 |
Leaderboard refreshes weekly (Friday at 00:00 UTC).
|
| 70 |
|
| 71 |
**Community Submissions**
|
| 72 |
+
Anyone can submit an assistant. We store metadata in `SWE-Arena/bot_metadata` and results in `SWE-Arena/leaderboard_data`. All submissions are validated via GitHub API.
|
| 73 |
|
| 74 |
## Using the Leaderboard
|
| 75 |
|
| 76 |
### Browsing
|
| 77 |
**Leaderboard Tab**:
|
| 78 |
- Searchable table (by assistant name or website)
|
| 79 |
+
- Filterable columns (by issue resolved rate, discussion resolved rate)
|
| 80 |
+
- Monthly charts (issue and discussion resolution trends and activity)
|
| 81 |
+
- View agent-assigned metrics, wanted issue resolutions, and discussion metrics
|
| 82 |
|
| 83 |
**Issues Wanted Tab**:
|
| 84 |
- Browse long-standing open issues (30+ days) from major open-source projects
|
|
|
|
| 96 |
|
| 97 |
## Understanding the Metrics
|
| 98 |
|
| 99 |
+
**Issue Resolved Rate**
|
| 100 |
Percentage of closed issues successfully completed:
|
| 101 |
|
| 102 |
```
|
| 103 |
+
Issue Resolved Rate = resolved issues ÷ closed issues × 100
|
| 104 |
```
|
| 105 |
|
| 106 |
An issue is "resolved" when `state_reason` is `completed` on GitHub. This means the problem was solved, not just closed without resolution.
|
| 107 |
|
| 108 |
Context matters: 100 closed issues at 70% resolution (70 resolved) differs from 10 closed issues at 90% (9 resolved). Consider both rate and volume.
|
| 109 |
|
| 110 |
+
**Discussion Resolved Rate**
|
| 111 |
+
Percentage of discussions successfully resolved:
|
| 112 |
+
|
| 113 |
+
```
|
| 114 |
+
Discussion Resolved Rate = resolved discussions ÷ total discussions × 100
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
A discussion is "resolved" when it has an answer chosen (`answer_chosen_at` is set) or when its state reason indicates it was answered. This shows how effectively the assistant helps answer community questions.
|
| 118 |
+
|
| 119 |
**Resolved Wanted Issues**
|
| 120 |
Long-standing issues (30+ days old) from major open-source projects that the assistant resolved. An issue qualifies when:
|
| 121 |
1. It's from a tracked organization (Apache, GitHub, Hugging Face)
|
|
|
|
| 130 |
Issues that have been open for 30+ days represent real challenges the community has struggled to address. These are harder than typical issues and demonstrate an assistant's problem-solving capabilities.
|
| 131 |
|
| 132 |
**Monthly Trends**
|
| 133 |
+
- **Line plots**: Issue and discussion resolved rate changes over time
|
| 134 |
+
- **Bar charts**: Issue and discussion volume per month
|
| 135 |
|
| 136 |
Patterns to watch:
|
| 137 |
- Consistent high rates = effective problem-solving
|
| 138 |
- Increasing trends = improving assistants
|
| 139 |
- High volume + good rates = productivity + effectiveness
|
| 140 |
- High wanted issue resolution = ability to tackle challenging community problems
|
| 141 |
+
- High discussion resolution = effective community engagement and knowledge sharing
|
| 142 |
|
| 143 |
## What's Next
|
| 144 |
|
| 145 |
Planned improvements:
|
| 146 |
- Repository-based analysis
|
| 147 |
- Extended metrics (comment activity, response time, code complexity)
|
| 148 |
+
- Resolution time tracking from issue creation to PR merge and discussion creation to resolution
|
| 149 |
+
- Issue and discussion category patterns and difficulty assessment
|
| 150 |
- Expanded organization and label tracking for wanted issues
|
| 151 |
- Integration with additional high-impact open-source organizations
|
| 152 |
+
- Discussion quality metrics (helpfulness, community engagement)
|
| 153 |
|
| 154 |
## Questions or Issues?
|
| 155 |
|
app.py
CHANGED
|
@@ -27,7 +27,7 @@ load_dotenv()
|
|
| 27 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 28 |
AGENTS_REPO_LOCAL_PATH = os.path.expanduser("~/bot_metadata") # Local git clone path
|
| 29 |
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
|
| 30 |
-
LEADERBOARD_REPO = "SWE-Arena/
|
| 31 |
LONGSTANDING_GAP_DAYS = 30 # Minimum days for an issue to be considered long-standing
|
| 32 |
GIT_SYNC_TIMEOUT = 300 # 5 minutes timeout for git pull
|
| 33 |
MAX_RETRIES = 5
|
|
@@ -35,10 +35,13 @@ MAX_RETRIES = 5
|
|
| 35 |
LEADERBOARD_COLUMNS = [
|
| 36 |
("Agent Name", "string"),
|
| 37 |
("Website", "string"),
|
|
|
|
|
|
|
| 38 |
("Total Issues", "number"),
|
|
|
|
| 39 |
("Resolved Issues", "number"),
|
| 40 |
-
("Resolved Rate (%)", "number"),
|
| 41 |
("Resolved Wanted Issues", "number"),
|
|
|
|
| 42 |
]
|
| 43 |
|
| 44 |
# =============================================================================
|
|
@@ -507,6 +510,177 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 507 |
return fig
|
| 508 |
|
| 509 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
def get_leaderboard_dataframe():
|
| 511 |
"""
|
| 512 |
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
|
|
@@ -543,14 +717,17 @@ def get_leaderboard_dataframe():
|
|
| 543 |
filtered_count += 1
|
| 544 |
continue
|
| 545 |
|
| 546 |
-
# Only include display-relevant fields
|
| 547 |
rows.append([
|
| 548 |
data.get('name', 'Unknown'),
|
| 549 |
data.get('website', 'N/A'),
|
| 550 |
-
|
| 551 |
-
data.get('
|
| 552 |
-
|
| 553 |
-
data.get('
|
|
|
|
|
|
|
|
|
|
| 554 |
])
|
| 555 |
|
| 556 |
print(f"Filtered out {filtered_count} agents with 0 issues")
|
|
@@ -561,7 +738,11 @@ def get_leaderboard_dataframe():
|
|
| 561 |
df = pd.DataFrame(rows, columns=column_names)
|
| 562 |
|
| 563 |
# Ensure numeric types
|
| 564 |
-
numeric_cols = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
for col in numeric_cols:
|
| 566 |
if col in df.columns:
|
| 567 |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
|
@@ -726,9 +907,9 @@ print(f"On startup: Loads cached data from HuggingFace on demand")
|
|
| 726 |
print(f"{'='*80}\n")
|
| 727 |
|
| 728 |
# Create Gradio interface
|
| 729 |
-
with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as app:
|
| 730 |
-
gr.Markdown("# SWE Agent Issue Leaderboard")
|
| 731 |
-
gr.Markdown(f"Track and compare GitHub issue resolution statistics for SWE agents")
|
| 732 |
|
| 733 |
with gr.Tabs():
|
| 734 |
|
|
@@ -741,12 +922,12 @@ with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as a
|
|
| 741 |
search_columns=["Agent Name", "Website"],
|
| 742 |
filter_columns=[
|
| 743 |
ColumnFilter(
|
| 744 |
-
"Resolved Rate (%)",
|
| 745 |
min=0,
|
| 746 |
max=100,
|
| 747 |
default=[0, 100],
|
| 748 |
type="slider",
|
| 749 |
-
label="Resolved Rate (%)"
|
| 750 |
)
|
| 751 |
]
|
| 752 |
)
|
|
@@ -772,6 +953,20 @@ with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as a
|
|
| 772 |
outputs=[monthly_metrics_plot]
|
| 773 |
)
|
| 774 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 775 |
|
| 776 |
# Issues Wanted Tab
|
| 777 |
with gr.Tab("Issues Wanted"):
|
|
|
|
| 27 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 28 |
AGENTS_REPO_LOCAL_PATH = os.path.expanduser("~/bot_metadata") # Local git clone path
|
| 29 |
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
|
| 30 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data" # HuggingFace dataset for leaderboard data
|
| 31 |
LONGSTANDING_GAP_DAYS = 30 # Minimum days for an issue to be considered long-standing
|
| 32 |
GIT_SYNC_TIMEOUT = 300 # 5 minutes timeout for git pull
|
| 33 |
MAX_RETRIES = 5
|
|
|
|
| 35 |
LEADERBOARD_COLUMNS = [
|
| 36 |
("Agent Name", "string"),
|
| 37 |
("Website", "string"),
|
| 38 |
+
("Issue Resolved Rate (%)", "number"),
|
| 39 |
+
("Discussion Resolved Rate (%)", "number"),
|
| 40 |
("Total Issues", "number"),
|
| 41 |
+
("Total Discussions", "number"),
|
| 42 |
("Resolved Issues", "number"),
|
|
|
|
| 43 |
("Resolved Wanted Issues", "number"),
|
| 44 |
+
("Resolved Discussions", "number"),
|
| 45 |
]
|
| 46 |
|
| 47 |
# =============================================================================
|
|
|
|
| 510 |
return fig
|
| 511 |
|
| 512 |
|
| 513 |
+
def create_discussion_monthly_metrics_plot(top_n=5):
|
| 514 |
+
"""
|
| 515 |
+
Create a Plotly figure with dual y-axes showing discussion metrics:
|
| 516 |
+
- Left y-axis: Discussion Resolved Rate (%) as line curves
|
| 517 |
+
- Right y-axis: Total Discussions created as bar charts
|
| 518 |
+
|
| 519 |
+
Each agent gets a unique color for both their line and bars.
|
| 520 |
+
|
| 521 |
+
Args:
|
| 522 |
+
top_n: Number of top agents to show (default: 5)
|
| 523 |
+
"""
|
| 524 |
+
# Load from saved dataset
|
| 525 |
+
saved_data = load_leaderboard_data_from_hf()
|
| 526 |
+
|
| 527 |
+
if not saved_data or 'discussion_monthly_metrics' not in saved_data:
|
| 528 |
+
# Return an empty figure with a message
|
| 529 |
+
fig = go.Figure()
|
| 530 |
+
fig.add_annotation(
|
| 531 |
+
text="No discussion data available for visualization",
|
| 532 |
+
xref="paper", yref="paper",
|
| 533 |
+
x=0.5, y=0.5, showarrow=False,
|
| 534 |
+
font=dict(size=16)
|
| 535 |
+
)
|
| 536 |
+
fig.update_layout(
|
| 537 |
+
title=None,
|
| 538 |
+
xaxis_title=None,
|
| 539 |
+
height=500
|
| 540 |
+
)
|
| 541 |
+
return fig
|
| 542 |
+
|
| 543 |
+
metrics = saved_data['discussion_monthly_metrics']
|
| 544 |
+
print(f"Loaded discussion monthly metrics from saved dataset")
|
| 545 |
+
|
| 546 |
+
# Apply top_n filter if specified
|
| 547 |
+
if top_n is not None and top_n > 0 and metrics.get('agents'):
|
| 548 |
+
# Calculate total discussions for each agent
|
| 549 |
+
agent_totals = []
|
| 550 |
+
for agent_name in metrics['agents']:
|
| 551 |
+
agent_data = metrics['data'].get(agent_name, {})
|
| 552 |
+
total_discussions = sum(agent_data.get('total_discussions', []))
|
| 553 |
+
agent_totals.append((agent_name, total_discussions))
|
| 554 |
+
|
| 555 |
+
# Sort by total discussions and take top N
|
| 556 |
+
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 557 |
+
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 558 |
+
|
| 559 |
+
# Filter metrics to only include top agents
|
| 560 |
+
metrics = {
|
| 561 |
+
'agents': top_agents,
|
| 562 |
+
'months': metrics['months'],
|
| 563 |
+
'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
|
| 564 |
+
}
|
| 565 |
+
|
| 566 |
+
if not metrics['agents'] or not metrics['months']:
|
| 567 |
+
# Return an empty figure with a message
|
| 568 |
+
fig = go.Figure()
|
| 569 |
+
fig.add_annotation(
|
| 570 |
+
text="No discussion data available for visualization",
|
| 571 |
+
xref="paper", yref="paper",
|
| 572 |
+
x=0.5, y=0.5, showarrow=False,
|
| 573 |
+
font=dict(size=16)
|
| 574 |
+
)
|
| 575 |
+
fig.update_layout(
|
| 576 |
+
title=None,
|
| 577 |
+
xaxis_title=None,
|
| 578 |
+
height=500
|
| 579 |
+
)
|
| 580 |
+
return fig
|
| 581 |
+
|
| 582 |
+
# Create figure with secondary y-axis
|
| 583 |
+
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 584 |
+
|
| 585 |
+
# Generate unique colors for many agents using HSL color space
|
| 586 |
+
def generate_color(index, total):
|
| 587 |
+
"""Generate distinct colors using HSL color space for better distribution"""
|
| 588 |
+
hue = (index * 360 / total) % 360
|
| 589 |
+
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
|
| 590 |
+
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
|
| 591 |
+
return f'hsl({hue}, {saturation}%, {lightness}%)'
|
| 592 |
+
|
| 593 |
+
agents = metrics['agents']
|
| 594 |
+
months = metrics['months']
|
| 595 |
+
data = metrics['data']
|
| 596 |
+
|
| 597 |
+
# Generate colors for all agents
|
| 598 |
+
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
|
| 599 |
+
|
| 600 |
+
# Add traces for each agent
|
| 601 |
+
for idx, agent_name in enumerate(agents):
|
| 602 |
+
color = agent_colors[agent_name]
|
| 603 |
+
agent_data = data[agent_name]
|
| 604 |
+
|
| 605 |
+
# Add line trace for resolved rate (left y-axis)
|
| 606 |
+
resolved_rates = agent_data['resolved_rates']
|
| 607 |
+
# Filter out None values for plotting
|
| 608 |
+
x_resolved = [month for month, rate in zip(months, resolved_rates) if rate is not None]
|
| 609 |
+
y_resolved = [rate for rate in resolved_rates if rate is not None]
|
| 610 |
+
|
| 611 |
+
if x_resolved and y_resolved: # Only add trace if there's data
|
| 612 |
+
fig.add_trace(
|
| 613 |
+
go.Scatter(
|
| 614 |
+
x=x_resolved,
|
| 615 |
+
y=y_resolved,
|
| 616 |
+
name=agent_name,
|
| 617 |
+
mode='lines+markers',
|
| 618 |
+
line=dict(color=color, width=2),
|
| 619 |
+
marker=dict(size=8),
|
| 620 |
+
legendgroup=agent_name,
|
| 621 |
+
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N agents
|
| 622 |
+
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 623 |
+
'Month: %{x}<br>' +
|
| 624 |
+
'Discussion Resolved Rate: %{y:.2f}%<br>' +
|
| 625 |
+
'<extra></extra>'
|
| 626 |
+
),
|
| 627 |
+
secondary_y=False
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
# Add bar trace for total discussions (right y-axis)
|
| 631 |
+
# Only show bars for months where agent has discussions
|
| 632 |
+
x_bars = []
|
| 633 |
+
y_bars = []
|
| 634 |
+
for month, count in zip(months, agent_data['total_discussions']):
|
| 635 |
+
if count > 0: # Only include months with discussions
|
| 636 |
+
x_bars.append(month)
|
| 637 |
+
y_bars.append(count)
|
| 638 |
+
|
| 639 |
+
if x_bars and y_bars: # Only add trace if there's data
|
| 640 |
+
fig.add_trace(
|
| 641 |
+
go.Bar(
|
| 642 |
+
x=x_bars,
|
| 643 |
+
y=y_bars,
|
| 644 |
+
name=agent_name,
|
| 645 |
+
marker=dict(color=color, opacity=0.6),
|
| 646 |
+
legendgroup=agent_name,
|
| 647 |
+
showlegend=False, # Hide duplicate legend entry (already shown in Scatter)
|
| 648 |
+
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 649 |
+
'Month: %{x}<br>' +
|
| 650 |
+
'Total Discussions: %{y}<br>' +
|
| 651 |
+
'<extra></extra>',
|
| 652 |
+
offsetgroup=agent_name # Group bars by agent for proper spacing
|
| 653 |
+
),
|
| 654 |
+
secondary_y=True
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
# Update axes labels
|
| 658 |
+
fig.update_xaxes(title_text=None)
|
| 659 |
+
fig.update_yaxes(
|
| 660 |
+
title_text="<b>Discussion Resolved Rate (%)</b>",
|
| 661 |
+
range=[0, 100],
|
| 662 |
+
secondary_y=False,
|
| 663 |
+
showticklabels=True,
|
| 664 |
+
tickmode='linear',
|
| 665 |
+
dtick=10,
|
| 666 |
+
showgrid=True
|
| 667 |
+
)
|
| 668 |
+
fig.update_yaxes(title_text="<b>Total Discussions</b>", secondary_y=True)
|
| 669 |
+
|
| 670 |
+
# Update layout
|
| 671 |
+
show_legend = (top_n is not None and top_n <= 10)
|
| 672 |
+
fig.update_layout(
|
| 673 |
+
title=None,
|
| 674 |
+
hovermode='closest', # Show individual agent info on hover
|
| 675 |
+
barmode='group',
|
| 676 |
+
height=600,
|
| 677 |
+
showlegend=show_legend,
|
| 678 |
+
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
return fig
|
| 682 |
+
|
| 683 |
+
|
| 684 |
def get_leaderboard_dataframe():
|
| 685 |
"""
|
| 686 |
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
|
|
|
|
| 717 |
filtered_count += 1
|
| 718 |
continue
|
| 719 |
|
| 720 |
+
# Only include display-relevant fields (new column order)
|
| 721 |
rows.append([
|
| 722 |
data.get('name', 'Unknown'),
|
| 723 |
data.get('website', 'N/A'),
|
| 724 |
+
data.get('resolved_rate', 0.0), # Issue Resolved Rate (%)
|
| 725 |
+
data.get('discussion_resolved_rate', 0.0), # Discussion Resolved Rate (%)
|
| 726 |
+
total_issues, # Total Issues
|
| 727 |
+
data.get('total_discussions', 0), # Total Discussions
|
| 728 |
+
data.get('resolved_issues', 0), # Resolved Issues
|
| 729 |
+
data.get('resolved_wanted_issues', 0), # Resolved Wanted Issues
|
| 730 |
+
data.get('resolved_discussions', 0), # Resolved Discussions
|
| 731 |
])
|
| 732 |
|
| 733 |
print(f"Filtered out {filtered_count} agents with 0 issues")
|
|
|
|
| 738 |
df = pd.DataFrame(rows, columns=column_names)
|
| 739 |
|
| 740 |
# Ensure numeric types
|
| 741 |
+
numeric_cols = [
|
| 742 |
+
"Issue Resolved Rate (%)", "Discussion Resolved Rate (%)",
|
| 743 |
+
"Total Issues", "Total Discussions",
|
| 744 |
+
"Resolved Issues", "Resolved Wanted Issues", "Resolved Discussions"
|
| 745 |
+
]
|
| 746 |
for col in numeric_cols:
|
| 747 |
if col in df.columns:
|
| 748 |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
|
|
|
| 907 |
print(f"{'='*80}\n")
|
| 908 |
|
| 909 |
# Create Gradio interface
|
| 910 |
+
with gr.Blocks(title="SWE Agent Issue & Discussion Leaderboard", theme=gr.themes.Soft()) as app:
|
| 911 |
+
gr.Markdown("# SWE Agent Issue & Discussion Leaderboard")
|
| 912 |
+
gr.Markdown(f"Track and compare GitHub issue and discussion resolution statistics for SWE agents")
|
| 913 |
|
| 914 |
with gr.Tabs():
|
| 915 |
|
|
|
|
| 922 |
search_columns=["Agent Name", "Website"],
|
| 923 |
filter_columns=[
|
| 924 |
ColumnFilter(
|
| 925 |
+
"Issue Resolved Rate (%)",
|
| 926 |
min=0,
|
| 927 |
max=100,
|
| 928 |
default=[0, 100],
|
| 929 |
type="slider",
|
| 930 |
+
label="Issue Resolved Rate (%)"
|
| 931 |
)
|
| 932 |
]
|
| 933 |
)
|
|
|
|
| 953 |
outputs=[monthly_metrics_plot]
|
| 954 |
)
|
| 955 |
|
| 956 |
+
# Discussion Monthly Metrics Section
|
| 957 |
+
gr.Markdown("---") # Divider
|
| 958 |
+
gr.Markdown("### Discussion Performance - Top 5 Agents")
|
| 959 |
+
gr.Markdown("*Shows discussion resolution trends and volumes for the most active agents*")
|
| 960 |
+
|
| 961 |
+
discussion_metrics_plot = gr.Plot(label="Discussion Monthly Metrics")
|
| 962 |
+
|
| 963 |
+
# Load discussion monthly metrics when app starts
|
| 964 |
+
app.load(
|
| 965 |
+
fn=lambda: create_discussion_monthly_metrics_plot(),
|
| 966 |
+
inputs=[],
|
| 967 |
+
outputs=[discussion_metrics_plot]
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
|
| 971 |
# Issues Wanted Tab
|
| 972 |
with gr.Tab("Issues Wanted"):
|
msr.py
CHANGED
|
@@ -30,7 +30,7 @@ AGENTS_REPO_LOCAL_PATH = os.path.expanduser("~/bot_metadata") # Local git clone
|
|
| 30 |
DUCKDB_CACHE_FILE = "cache.duckdb"
|
| 31 |
GHARCHIVE_DATA_LOCAL_PATH = os.path.expanduser("~/gharchive/data")
|
| 32 |
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
|
| 33 |
-
LEADERBOARD_REPO = "SWE-Arena/
|
| 34 |
LEADERBOARD_TIME_FRAME_DAYS = 180
|
| 35 |
LONGSTANDING_GAP_DAYS = 30 # Minimum days for an issue to be considered long-standing
|
| 36 |
|
|
@@ -355,181 +355,22 @@ def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_LO
|
|
| 355 |
|
| 356 |
|
| 357 |
# =============================================================================
|
| 358 |
-
# STREAMING BATCH PROCESSING FOR
|
| 359 |
# =============================================================================
|
| 360 |
|
| 361 |
-
def
|
| 362 |
"""
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage.
|
| 368 |
-
Instead of loading 180 days (4,344 files) at once, processes 7 days at a time.
|
| 369 |
-
|
| 370 |
-
This prevents OOM errors by:
|
| 371 |
-
1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
|
| 372 |
-
2. Incrementally building the results dictionary
|
| 373 |
-
3. Allowing DuckDB to garbage collect after each batch
|
| 374 |
-
|
| 375 |
-
Args:
|
| 376 |
-
conn: DuckDB connection instance
|
| 377 |
-
identifiers: List of GitHub usernames/bot identifiers (~1500)
|
| 378 |
-
start_date: Start datetime (timezone-aware)
|
| 379 |
-
end_date: End datetime (timezone-aware)
|
| 380 |
-
|
| 381 |
-
Returns:
|
| 382 |
-
Dictionary mapping agent identifier to list of issue metadata
|
| 383 |
-
"""
|
| 384 |
-
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 385 |
-
metadata_by_agent = defaultdict(list)
|
| 386 |
-
|
| 387 |
-
# Calculate total batches
|
| 388 |
-
total_days = (end_date - start_date).days
|
| 389 |
-
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
|
| 390 |
-
|
| 391 |
-
# Process in configurable batches
|
| 392 |
-
current_date = start_date
|
| 393 |
-
batch_num = 0
|
| 394 |
-
total_issues = 0
|
| 395 |
-
|
| 396 |
-
print(f" Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")
|
| 397 |
-
|
| 398 |
-
while current_date <= end_date:
|
| 399 |
-
batch_num += 1
|
| 400 |
-
batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)
|
| 401 |
-
|
| 402 |
-
# Get file patterns for THIS BATCH ONLY (not all 180 days)
|
| 403 |
-
file_patterns = generate_file_path_patterns(current_date, batch_end)
|
| 404 |
-
|
| 405 |
-
if not file_patterns:
|
| 406 |
-
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
|
| 407 |
-
current_date = batch_end + timedelta(days=1)
|
| 408 |
-
continue
|
| 409 |
-
|
| 410 |
-
# Progress indicator
|
| 411 |
-
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)
|
| 412 |
-
|
| 413 |
-
# Build file patterns SQL for THIS BATCH
|
| 414 |
-
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
|
| 415 |
-
|
| 416 |
-
# Query for this batch
|
| 417 |
-
# Note: For IssuesEvent, we use the issue user/assignee as author
|
| 418 |
-
# For IssueCommentEvent, we use the commenter as author
|
| 419 |
-
# IMPORTANT: We collect events from this batch's time range, but filter to only
|
| 420 |
-
# include issues that were CREATED within the overall timeframe (start_date).
|
| 421 |
-
# This prevents including old issues that just happen to have recent events.
|
| 422 |
-
# We still check their closed_at status (which may be outside the timeframe).
|
| 423 |
-
query = f"""
|
| 424 |
-
WITH issue_events AS (
|
| 425 |
-
SELECT
|
| 426 |
-
CONCAT(
|
| 427 |
-
REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
|
| 428 |
-
'/issues/',
|
| 429 |
-
CAST(payload.issue.number AS VARCHAR)
|
| 430 |
-
) as url,
|
| 431 |
-
CASE
|
| 432 |
-
WHEN type = 'IssuesEvent' THEN
|
| 433 |
-
COALESCE(
|
| 434 |
-
CASE WHEN payload.issue.user.login IN ({identifier_list}) THEN payload.issue.user.login END,
|
| 435 |
-
payload.issue.assignee.login,
|
| 436 |
-
(SELECT a.login
|
| 437 |
-
FROM (SELECT UNNEST(payload.issue.assignees) as a)
|
| 438 |
-
WHERE a.login IN ({identifier_list})
|
| 439 |
-
LIMIT 1)
|
| 440 |
-
)
|
| 441 |
-
WHEN type = 'IssueCommentEvent' THEN
|
| 442 |
-
payload.comment.user.login
|
| 443 |
-
ELSE NULL
|
| 444 |
-
END as agent_identifier,
|
| 445 |
-
created_at as event_time,
|
| 446 |
-
payload.issue.created_at as issue_created_at,
|
| 447 |
-
payload.issue.closed_at as issue_closed_at,
|
| 448 |
-
payload.issue.state_reason as state_reason
|
| 449 |
-
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 450 |
-
WHERE
|
| 451 |
-
type IN ('IssuesEvent', 'IssueCommentEvent')
|
| 452 |
-
AND payload.issue.number IS NOT NULL
|
| 453 |
-
AND payload.issue.pull_request IS NULL
|
| 454 |
-
AND (
|
| 455 |
-
(type = 'IssuesEvent'
|
| 456 |
-
AND (
|
| 457 |
-
payload.issue.user.login IN ({identifier_list})
|
| 458 |
-
OR payload.issue.assignee.login IN ({identifier_list})
|
| 459 |
-
OR EXISTS (
|
| 460 |
-
SELECT 1 FROM (SELECT UNNEST(payload.issue.assignees) as a)
|
| 461 |
-
WHERE a.login IN ({identifier_list})
|
| 462 |
-
)
|
| 463 |
-
))
|
| 464 |
-
OR (type = 'IssueCommentEvent' AND payload.comment.user.login IN ({identifier_list}))
|
| 465 |
-
)
|
| 466 |
-
),
|
| 467 |
-
issue_timeline AS (
|
| 468 |
-
SELECT
|
| 469 |
-
url,
|
| 470 |
-
agent_identifier,
|
| 471 |
-
MIN(issue_created_at) as created_at,
|
| 472 |
-
MAX(issue_closed_at) as closed_at,
|
| 473 |
-
MAX(state_reason) as state_reason
|
| 474 |
-
FROM issue_events
|
| 475 |
-
GROUP BY url, agent_identifier
|
| 476 |
-
)
|
| 477 |
-
SELECT url, agent_identifier, created_at, closed_at, state_reason
|
| 478 |
-
FROM issue_timeline
|
| 479 |
-
WHERE agent_identifier IS NOT NULL
|
| 480 |
-
AND created_at IS NOT NULL
|
| 481 |
-
AND created_at >= '{start_date.isoformat()}'
|
| 482 |
-
"""
|
| 483 |
-
|
| 484 |
-
try:
|
| 485 |
-
results = conn.execute(query).fetchall()
|
| 486 |
-
batch_issues = 0
|
| 487 |
-
|
| 488 |
-
# Add results to accumulating dictionary
|
| 489 |
-
for row in results:
|
| 490 |
-
url = row[0]
|
| 491 |
-
agent_identifier = row[1]
|
| 492 |
-
created_at = normalize_date_format(row[2]) if row[2] else None
|
| 493 |
-
closed_at = normalize_date_format(row[3]) if row[3] else None
|
| 494 |
-
state_reason = row[4]
|
| 495 |
-
|
| 496 |
-
if not url or not agent_identifier:
|
| 497 |
-
continue
|
| 498 |
-
|
| 499 |
-
issue_metadata = {
|
| 500 |
-
'url': url,
|
| 501 |
-
'created_at': created_at,
|
| 502 |
-
'closed_at': closed_at,
|
| 503 |
-
'state_reason': state_reason,
|
| 504 |
-
}
|
| 505 |
-
|
| 506 |
-
metadata_by_agent[agent_identifier].append(issue_metadata)
|
| 507 |
-
batch_issues += 1
|
| 508 |
-
total_issues += 1
|
| 509 |
-
|
| 510 |
-
print(f"✓ {batch_issues} issues found")
|
| 511 |
-
|
| 512 |
-
except Exception as e:
|
| 513 |
-
print(f"\n ✗ Batch {batch_num} error: {str(e)}")
|
| 514 |
-
traceback.print_exc()
|
| 515 |
-
|
| 516 |
-
# Move to next batch
|
| 517 |
-
current_date = batch_end + timedelta(days=1)
|
| 518 |
-
|
| 519 |
-
# Final summary
|
| 520 |
-
agents_with_data = sum(1 for issues in metadata_by_agent.values() if issues)
|
| 521 |
-
print(f"\n ✓ Complete: {total_issues} issues found for {agents_with_data}/{len(identifiers)} agents")
|
| 522 |
-
|
| 523 |
-
return dict(metadata_by_agent)
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_date):
|
| 527 |
-
"""
|
| 528 |
-
UNIFIED: Fetch both agent-assigned issues AND wanted issues using streaming batch processing.
|
| 529 |
-
|
| 530 |
-
Tracks TWO types of issues:
|
| 531 |
1. Agent-assigned issues: Issues where agents are assigned to or commented on
|
| 532 |
2. Wanted issues: Long-standing issues from tracked orgs linked to merged PRs by agents
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
Args:
|
| 535 |
conn: DuckDB connection instance
|
|
@@ -538,18 +379,20 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 538 |
end_date: End datetime (timezone-aware)
|
| 539 |
|
| 540 |
Returns:
|
| 541 |
-
Dictionary with
|
| 542 |
- 'agent_issues': {agent_id: [issue_metadata]} for agent-assigned issues
|
| 543 |
- 'wanted_open': [open_wanted_issues] for long-standing open issues
|
| 544 |
- 'wanted_resolved': {agent_id: [resolved_wanted]} for resolved wanted issues
|
|
|
|
| 545 |
"""
|
| 546 |
-
|
| 547 |
-
print(f" [1/2] Fetching agent-assigned/commented issues...")
|
| 548 |
-
agent_issues = fetch_all_issue_metadata_streaming(conn, identifiers, start_date, end_date)
|
| 549 |
-
|
| 550 |
-
# Now fetch wanted issues
|
| 551 |
-
print(f"\n [2/2] Fetching wanted issues from tracked orgs...")
|
| 552 |
identifier_set = set(identifiers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
|
| 554 |
# Storage for wanted issues
|
| 555 |
all_issues = {} # issue_url -> issue_metadata
|
|
@@ -557,6 +400,9 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 557 |
pr_creators = {} # pr_url -> creator login
|
| 558 |
pr_merged_at = {} # pr_url -> merged_at timestamp
|
| 559 |
|
|
|
|
|
|
|
|
|
|
| 560 |
# Calculate total batches
|
| 561 |
total_days = (end_date - start_date).days
|
| 562 |
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
|
|
@@ -565,7 +411,7 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 565 |
current_date = start_date
|
| 566 |
batch_num = 0
|
| 567 |
|
| 568 |
-
print(f" Streaming {total_batches} batches
|
| 569 |
|
| 570 |
while current_date <= end_date:
|
| 571 |
batch_num += 1
|
|
@@ -586,42 +432,212 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 586 |
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
|
| 587 |
|
| 588 |
try:
|
| 589 |
-
#
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
SELECT *
|
| 593 |
-
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 594 |
-
""")
|
| 595 |
-
|
| 596 |
-
# Query 1: Fetch all issues (NOT PRs) from tracked orgs
|
| 597 |
-
issue_query = """
|
| 598 |
SELECT
|
| 599 |
-
|
| 600 |
json_extract_string(repo, '$.name') as repo_name,
|
| 601 |
-
json_extract_string(
|
|
|
|
|
|
|
|
|
|
| 602 |
json_extract_string(payload, '$.issue.number') as issue_number,
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
json_extract(payload, '$.issue.labels') as
|
| 606 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
WHERE
|
| 608 |
-
type IN ('IssuesEvent', 'IssueCommentEvent')
|
| 609 |
-
AND
|
| 610 |
-
|
| 611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
"""
|
| 613 |
|
| 614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
repo_name = row[1]
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
|
|
|
| 625 |
|
| 626 |
if not issue_url or not repo_name:
|
| 627 |
continue
|
|
@@ -667,38 +683,13 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 667 |
'labels': label_names
|
| 668 |
}
|
| 669 |
|
| 670 |
-
#
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
COALESCE(
|
| 678 |
-
json_extract_string(payload, '$.issue.user.login'),
|
| 679 |
-
json_extract_string(payload, '$.pull_request.user.login')
|
| 680 |
-
) as pr_creator,
|
| 681 |
-
COALESCE(
|
| 682 |
-
json_extract_string(payload, '$.issue.pull_request.merged_at'),
|
| 683 |
-
json_extract_string(payload, '$.pull_request.merged_at')
|
| 684 |
-
) as merged_at,
|
| 685 |
-
COALESCE(
|
| 686 |
-
json_extract_string(payload, '$.issue.body'),
|
| 687 |
-
json_extract_string(payload, '$.pull_request.body')
|
| 688 |
-
) as pr_body
|
| 689 |
-
FROM batch_data
|
| 690 |
-
WHERE
|
| 691 |
-
(type = 'IssueCommentEvent' AND json_extract_string(payload, '$.issue.pull_request') IS NOT NULL)
|
| 692 |
-
OR type = 'PullRequestEvent'
|
| 693 |
-
"""
|
| 694 |
-
|
| 695 |
-
pr_results = conn.execute(pr_query).fetchall()
|
| 696 |
-
|
| 697 |
-
for row in pr_results:
|
| 698 |
-
pr_url = row[0]
|
| 699 |
-
pr_creator = row[1]
|
| 700 |
-
merged_at = row[2]
|
| 701 |
-
pr_body = row[3]
|
| 702 |
|
| 703 |
if not pr_url or not pr_creator:
|
| 704 |
continue
|
|
@@ -725,19 +716,76 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 725 |
else:
|
| 726 |
issue_to_prs[ref].add(pr_url)
|
| 727 |
|
| 728 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
|
| 730 |
-
|
| 731 |
-
conn.execute("DROP VIEW IF EXISTS batch_data")
|
| 732 |
|
| 733 |
except Exception as e:
|
| 734 |
print(f"\n ✗ Batch {batch_num} error: {str(e)}")
|
| 735 |
traceback.print_exc()
|
| 736 |
-
# Clean up temp view even on error
|
| 737 |
-
try:
|
| 738 |
-
conn.execute("DROP VIEW IF EXISTS batch_data")
|
| 739 |
-
except:
|
| 740 |
-
pass
|
| 741 |
|
| 742 |
# Move to next batch
|
| 743 |
current_date = batch_end + timedelta(days=1)
|
|
@@ -814,13 +862,16 @@ def fetch_unified_issue_metadata_streaming(conn, identifiers, start_date, end_da
|
|
| 814 |
except:
|
| 815 |
pass
|
| 816 |
|
|
|
|
| 817 |
print(f" ✓ Found {len(wanted_open)} long-standing open wanted issues")
|
| 818 |
print(f" ✓ Found {sum(len(issues) for issues in wanted_resolved.values())} resolved wanted issues across {len(wanted_resolved)} agents")
|
|
|
|
| 819 |
|
| 820 |
return {
|
| 821 |
-
'agent_issues': agent_issues,
|
| 822 |
'wanted_open': wanted_open,
|
| 823 |
-
'wanted_resolved': dict(wanted_resolved)
|
|
|
|
| 824 |
}
|
| 825 |
|
| 826 |
|
|
@@ -1020,13 +1071,94 @@ def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
|
| 1020 |
}
|
| 1021 |
|
| 1022 |
|
| 1023 |
-
def
|
| 1024 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1025 |
|
| 1026 |
Args:
|
| 1027 |
all_metadata_dict: Dictionary mapping agent ID to list of issue metadata (agent-assigned issues)
|
| 1028 |
agents: List of agent metadata
|
| 1029 |
wanted_resolved_dict: Optional dictionary mapping agent ID to list of resolved wanted issues
|
|
|
|
| 1030 |
"""
|
| 1031 |
if not agents:
|
| 1032 |
print("Error: No agents found")
|
|
@@ -1035,6 +1167,9 @@ def construct_leaderboard_from_metadata(all_metadata_dict, agents, wanted_resolv
|
|
| 1035 |
if wanted_resolved_dict is None:
|
| 1036 |
wanted_resolved_dict = {}
|
| 1037 |
|
|
|
|
|
|
|
|
|
|
| 1038 |
cache_dict = {}
|
| 1039 |
|
| 1040 |
for agent in agents:
|
|
@@ -1047,19 +1182,24 @@ def construct_leaderboard_from_metadata(all_metadata_dict, agents, wanted_resolv
|
|
| 1047 |
# Add wanted issues count
|
| 1048 |
resolved_wanted = len(wanted_resolved_dict.get(identifier, []))
|
| 1049 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1050 |
cache_dict[identifier] = {
|
| 1051 |
'name': agent_name,
|
| 1052 |
'website': agent.get('website', 'N/A'),
|
| 1053 |
'github_identifier': identifier,
|
| 1054 |
**stats,
|
| 1055 |
-
'resolved_wanted_issues': resolved_wanted
|
|
|
|
| 1056 |
}
|
| 1057 |
|
| 1058 |
return cache_dict
|
| 1059 |
|
| 1060 |
|
| 1061 |
-
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics, wanted_issues=None):
|
| 1062 |
-
"""Save leaderboard data, monthly metrics,
|
| 1063 |
try:
|
| 1064 |
token = get_hf_token()
|
| 1065 |
if not token:
|
|
@@ -1070,6 +1210,9 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics, wanted_issues
|
|
| 1070 |
if wanted_issues is None:
|
| 1071 |
wanted_issues = []
|
| 1072 |
|
|
|
|
|
|
|
|
|
|
| 1073 |
combined_data = {
|
| 1074 |
'metadata': {
|
| 1075 |
'last_updated': datetime.now(timezone.utc).isoformat(),
|
|
@@ -1080,7 +1223,8 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics, wanted_issues
|
|
| 1080 |
},
|
| 1081 |
'leaderboard': leaderboard_dict,
|
| 1082 |
'monthly_metrics': monthly_metrics,
|
| 1083 |
-
'wanted_issues': wanted_issues
|
|
|
|
| 1084 |
}
|
| 1085 |
|
| 1086 |
with open(LEADERBOARD_FILENAME, 'w') as f:
|
|
@@ -1144,14 +1288,15 @@ def mine_all_agents():
|
|
| 1144 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1145 |
|
| 1146 |
try:
|
| 1147 |
-
# USE UNIFIED STREAMING FUNCTION FOR
|
| 1148 |
-
results =
|
| 1149 |
conn, identifiers, start_date, end_date
|
| 1150 |
)
|
| 1151 |
|
| 1152 |
agent_issues = results['agent_issues']
|
| 1153 |
wanted_open = results['wanted_open']
|
| 1154 |
wanted_resolved = results['wanted_resolved']
|
|
|
|
| 1155 |
|
| 1156 |
except Exception as e:
|
| 1157 |
print(f"Error during DuckDB fetch: {str(e)}")
|
|
@@ -1163,9 +1308,16 @@ def mine_all_agents():
|
|
| 1163 |
print(f"\n[4/4] Saving leaderboard...")
|
| 1164 |
|
| 1165 |
try:
|
| 1166 |
-
leaderboard_dict = construct_leaderboard_from_metadata(
|
|
|
|
|
|
|
| 1167 |
monthly_metrics = calculate_monthly_metrics_by_agent(agent_issues, agents)
|
| 1168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1169 |
|
| 1170 |
except Exception as e:
|
| 1171 |
print(f"Error saving leaderboard: {str(e)}")
|
|
|
|
| 30 |
DUCKDB_CACHE_FILE = "cache.duckdb"
|
| 31 |
GHARCHIVE_DATA_LOCAL_PATH = os.path.expanduser("~/gharchive/data")
|
| 32 |
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
|
| 33 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data"
|
| 34 |
LEADERBOARD_TIME_FRAME_DAYS = 180
|
| 35 |
LONGSTANDING_GAP_DAYS = 30 # Minimum days for an issue to be considered long-standing
|
| 36 |
|
|
|
|
| 355 |
|
| 356 |
|
| 357 |
# =============================================================================
|
| 358 |
+
# STREAMING BATCH PROCESSING - UNIFIED QUERY FOR ALL METADATA
|
| 359 |
# =============================================================================
|
| 360 |
|
| 361 |
+
def fetch_all_metadata_streaming(conn, identifiers, start_date, end_date):
|
| 362 |
"""
|
| 363 |
+
UNIFIED QUERY: Fetches ALL metadata types in ONE query per batch:
|
| 364 |
+
- IssuesEvent, IssueCommentEvent (for agent-assigned issues AND wanted issues)
|
| 365 |
+
- PullRequestEvent (for wanted issue tracking)
|
| 366 |
+
- DiscussionEvent (for discussion tracking)
|
| 367 |
|
| 368 |
+
Then post-processes in Python to separate into:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
1. Agent-assigned issues: Issues where agents are assigned to or commented on
|
| 370 |
2. Wanted issues: Long-standing issues from tracked orgs linked to merged PRs by agents
|
| 371 |
+
3. Discussions: GitHub discussions created by agents
|
| 372 |
+
|
| 373 |
+
This approach is more efficient than running separate queries for each category.
|
| 374 |
|
| 375 |
Args:
|
| 376 |
conn: DuckDB connection instance
|
|
|
|
| 379 |
end_date: End datetime (timezone-aware)
|
| 380 |
|
| 381 |
Returns:
|
| 382 |
+
Dictionary with four keys:
|
| 383 |
- 'agent_issues': {agent_id: [issue_metadata]} for agent-assigned issues
|
| 384 |
- 'wanted_open': [open_wanted_issues] for long-standing open issues
|
| 385 |
- 'wanted_resolved': {agent_id: [resolved_wanted]} for resolved wanted issues
|
| 386 |
+
- 'agent_discussions': {agent_id: [discussion_metadata]} for agent discussions
|
| 387 |
"""
|
| 388 |
+
print(f" Fetching ALL metadata (issues, PRs, discussions) with unified query...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
identifier_set = set(identifiers)
|
| 390 |
+
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 391 |
+
tracked_orgs_list = ', '.join([f"'{org}'" for org in TRACKED_ORGS])
|
| 392 |
+
|
| 393 |
+
# Storage for agent-assigned issues
|
| 394 |
+
agent_issues = defaultdict(list) # agent_id -> [issue_metadata]
|
| 395 |
+
agent_issue_urls = defaultdict(set) # agent_id -> set of issue URLs (for deduplication)
|
| 396 |
|
| 397 |
# Storage for wanted issues
|
| 398 |
all_issues = {} # issue_url -> issue_metadata
|
|
|
|
| 400 |
pr_creators = {} # pr_url -> creator login
|
| 401 |
pr_merged_at = {} # pr_url -> merged_at timestamp
|
| 402 |
|
| 403 |
+
# Storage for discussions
|
| 404 |
+
discussions_by_agent = defaultdict(list)
|
| 405 |
+
|
| 406 |
# Calculate total batches
|
| 407 |
total_days = (end_date - start_date).days
|
| 408 |
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
|
|
|
|
| 411 |
current_date = start_date
|
| 412 |
batch_num = 0
|
| 413 |
|
| 414 |
+
print(f" Streaming {total_batches} batches with unified query...")
|
| 415 |
|
| 416 |
while current_date <= end_date:
|
| 417 |
batch_num += 1
|
|
|
|
| 432 |
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
|
| 433 |
|
| 434 |
try:
|
| 435 |
+
# UNIFIED QUERY: Fetch ALL event types in ONE query
|
| 436 |
+
# Post-process in Python to separate into agent-assigned issues, wanted issues, PRs, and discussions
|
| 437 |
+
unified_query = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
SELECT
|
| 439 |
+
type,
|
| 440 |
json_extract_string(repo, '$.name') as repo_name,
|
| 441 |
+
json_extract_string(repo, '$.url') as repo_url,
|
| 442 |
+
-- Issue fields
|
| 443 |
+
json_extract_string(payload, '$.issue.html_url') as issue_url,
|
| 444 |
+
json_extract_string(payload, '$.issue.title') as issue_title,
|
| 445 |
json_extract_string(payload, '$.issue.number') as issue_number,
|
| 446 |
+
json_extract_string(payload, '$.issue.created_at') as issue_created_at,
|
| 447 |
+
json_extract_string(payload, '$.issue.closed_at') as issue_closed_at,
|
| 448 |
+
json_extract(payload, '$.issue.labels') as issue_labels,
|
| 449 |
+
json_extract_string(payload, '$.issue.pull_request') as is_pull_request,
|
| 450 |
+
json_extract_string(payload, '$.issue.state_reason') as issue_state_reason,
|
| 451 |
+
-- Actor/assignee fields for agent assignment
|
| 452 |
+
json_extract_string(payload, '$.issue.user.login') as issue_creator,
|
| 453 |
+
json_extract_string(payload, '$.issue.assignee.login') as issue_assignee,
|
| 454 |
+
json_extract(payload, '$.issue.assignees') as issue_assignees,
|
| 455 |
+
json_extract_string(payload, '$.comment.user.login') as commenter,
|
| 456 |
+
-- PR fields
|
| 457 |
+
COALESCE(
|
| 458 |
+
json_extract_string(payload, '$.issue.html_url'),
|
| 459 |
+
json_extract_string(payload, '$.pull_request.html_url')
|
| 460 |
+
) as pr_url,
|
| 461 |
+
COALESCE(
|
| 462 |
+
json_extract_string(payload, '$.issue.user.login'),
|
| 463 |
+
json_extract_string(payload, '$.pull_request.user.login')
|
| 464 |
+
) as pr_creator,
|
| 465 |
+
COALESCE(
|
| 466 |
+
json_extract_string(payload, '$.issue.pull_request.merged_at'),
|
| 467 |
+
json_extract_string(payload, '$.pull_request.merged_at')
|
| 468 |
+
) as pr_merged_at,
|
| 469 |
+
COALESCE(
|
| 470 |
+
json_extract_string(payload, '$.issue.body'),
|
| 471 |
+
json_extract_string(payload, '$.pull_request.body')
|
| 472 |
+
) as pr_body,
|
| 473 |
+
-- Discussion fields
|
| 474 |
+
json_extract_string(payload, '$.discussion.html_url') as discussion_url,
|
| 475 |
+
json_extract_string(payload, '$.discussion.user.login') as discussion_creator,
|
| 476 |
+
json_extract_string(payload, '$.discussion.created_at') as discussion_created_at,
|
| 477 |
+
json_extract_string(payload, '$.discussion.answer_chosen_at') as discussion_closed_at,
|
| 478 |
+
json_extract_string(payload, '$.discussion.state_reason') as discussion_state_reason,
|
| 479 |
+
json_extract_string(payload, '$.action') as action
|
| 480 |
+
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 481 |
WHERE
|
| 482 |
+
type IN ('IssuesEvent', 'IssueCommentEvent', 'PullRequestEvent', 'DiscussionEvent')
|
| 483 |
+
AND (
|
| 484 |
+
-- Agent-assigned issues: agent is creator, assignee, or commenter
|
| 485 |
+
(type = 'IssuesEvent' AND (
|
| 486 |
+
json_extract_string(payload, '$.issue.user.login') IN ({identifier_list})
|
| 487 |
+
OR json_extract_string(payload, '$.issue.assignee.login') IN ({identifier_list})
|
| 488 |
+
OR EXISTS (
|
| 489 |
+
SELECT 1 FROM (SELECT UNNEST(json_extract(payload, '$.issue.assignees')) as a)
|
| 490 |
+
WHERE json_extract_string(a, '$.login') IN ({identifier_list})
|
| 491 |
+
)
|
| 492 |
+
OR SPLIT_PART(json_extract_string(repo, '$.name'), '/', 1) IN ({tracked_orgs_list})
|
| 493 |
+
))
|
| 494 |
+
-- Issue comments: agent is commenter OR tracked org
|
| 495 |
+
OR (type = 'IssueCommentEvent' AND (
|
| 496 |
+
json_extract_string(payload, '$.comment.user.login') IN ({identifier_list})
|
| 497 |
+
OR SPLIT_PART(json_extract_string(repo, '$.name'), '/', 1) IN ({tracked_orgs_list})
|
| 498 |
+
))
|
| 499 |
+
-- PRs: agent is creator OR tracked org (for wanted issue tracking)
|
| 500 |
+
OR (type = 'PullRequestEvent' AND (
|
| 501 |
+
json_extract_string(payload, '$.pull_request.user.login') IN ({identifier_list})
|
| 502 |
+
OR SPLIT_PART(json_extract_string(repo, '$.name'), '/', 1) IN ({tracked_orgs_list})
|
| 503 |
+
))
|
| 504 |
+
-- Discussions: agent is creator AND tracked org
|
| 505 |
+
OR (type = 'DiscussionEvent'
|
| 506 |
+
AND json_extract_string(payload, '$.discussion.user.login') IN ({identifier_list})
|
| 507 |
+
AND SPLIT_PART(json_extract_string(repo, '$.name'), '/', 1) IN ({tracked_orgs_list})
|
| 508 |
+
)
|
| 509 |
+
)
|
| 510 |
"""
|
| 511 |
|
| 512 |
+
all_results = conn.execute(unified_query).fetchall()
|
| 513 |
+
|
| 514 |
+
# Post-process results to separate into different categories
|
| 515 |
+
# Row structure: [type, repo_name, repo_url, issue_url, issue_title, issue_number,
|
| 516 |
+
# issue_created_at, issue_closed_at, issue_labels, is_pull_request,
|
| 517 |
+
# issue_state_reason, issue_creator, issue_assignee, issue_assignees,
|
| 518 |
+
# commenter, pr_url, pr_creator, pr_merged_at, pr_body,
|
| 519 |
+
# discussion_url, discussion_creator, discussion_created_at,
|
| 520 |
+
# discussion_closed_at, discussion_state_reason, action]
|
| 521 |
+
|
| 522 |
+
issue_events = [] # For wanted tracking
|
| 523 |
+
pr_events = [] # For wanted tracking
|
| 524 |
+
discussion_events = [] # For discussion tracking
|
| 525 |
+
agent_issue_events = [] # For agent-assigned issues
|
| 526 |
+
|
| 527 |
+
for row in all_results:
|
| 528 |
+
event_type = row[0]
|
| 529 |
+
is_pr = row[9] # is_pull_request field
|
| 530 |
+
|
| 531 |
+
if event_type in ('IssuesEvent', 'IssueCommentEvent'):
|
| 532 |
+
if not is_pr: # It's an issue, not a PR
|
| 533 |
+
# Check if this is an agent-assigned issue
|
| 534 |
+
issue_creator = row[11]
|
| 535 |
+
issue_assignee = row[12]
|
| 536 |
+
issue_assignees_json = row[13]
|
| 537 |
+
commenter = row[14]
|
| 538 |
+
|
| 539 |
+
agent_identifier = None
|
| 540 |
+
|
| 541 |
+
if event_type == 'IssuesEvent':
|
| 542 |
+
# Check if issue creator, assignee, or any assignees match our identifiers
|
| 543 |
+
if issue_creator in identifier_set:
|
| 544 |
+
agent_identifier = issue_creator
|
| 545 |
+
elif issue_assignee in identifier_set:
|
| 546 |
+
agent_identifier = issue_assignee
|
| 547 |
+
else:
|
| 548 |
+
# Check assignees array
|
| 549 |
+
try:
|
| 550 |
+
if issue_assignees_json:
|
| 551 |
+
if isinstance(issue_assignees_json, str):
|
| 552 |
+
assignees_data = json.loads(issue_assignees_json)
|
| 553 |
+
else:
|
| 554 |
+
assignees_data = issue_assignees_json
|
| 555 |
+
|
| 556 |
+
if isinstance(assignees_data, list):
|
| 557 |
+
for assignee_obj in assignees_data:
|
| 558 |
+
if isinstance(assignee_obj, dict):
|
| 559 |
+
assignee_login = assignee_obj.get('login')
|
| 560 |
+
if assignee_login in identifier_set:
|
| 561 |
+
agent_identifier = assignee_login
|
| 562 |
+
break
|
| 563 |
+
except (json.JSONDecodeError, TypeError):
|
| 564 |
+
pass
|
| 565 |
+
|
| 566 |
+
elif event_type == 'IssueCommentEvent':
|
| 567 |
+
# Check if commenter is an agent
|
| 568 |
+
if commenter in identifier_set:
|
| 569 |
+
agent_identifier = commenter
|
| 570 |
+
|
| 571 |
+
# Add to appropriate list
|
| 572 |
+
if agent_identifier:
|
| 573 |
+
agent_issue_events.append((row, agent_identifier))
|
| 574 |
+
|
| 575 |
+
# Always add to issue_events for wanted tracking (if from tracked orgs)
|
| 576 |
+
issue_events.append(row)
|
| 577 |
+
else:
|
| 578 |
+
# It's a PR
|
| 579 |
+
pr_events.append(row)
|
| 580 |
+
|
| 581 |
+
elif event_type == 'PullRequestEvent':
|
| 582 |
+
pr_events.append(row)
|
| 583 |
+
|
| 584 |
+
elif event_type == 'DiscussionEvent':
|
| 585 |
+
discussion_events.append(row)
|
| 586 |
+
|
| 587 |
+
# Process agent-assigned issues
|
| 588 |
+
for row, agent_identifier in agent_issue_events:
|
| 589 |
+
# Row indices: repo_url=2, issue_url=3, issue_created_at=6, issue_closed_at=7, issue_state_reason=10
|
| 590 |
+
repo_url = row[2]
|
| 591 |
+
issue_url = row[3]
|
| 592 |
+
created_at = row[6]
|
| 593 |
+
closed_at = row[7]
|
| 594 |
+
state_reason = row[10]
|
| 595 |
+
|
| 596 |
+
if not issue_url or not agent_identifier:
|
| 597 |
+
continue
|
| 598 |
+
|
| 599 |
+
# Build full URL from repo_url if needed
|
| 600 |
+
if repo_url and '/issues/' not in issue_url:
|
| 601 |
+
issue_number = row[5]
|
| 602 |
+
full_url = f"{repo_url.replace('api.github.com/repos/', 'github.com/')}/issues/{issue_number}"
|
| 603 |
+
else:
|
| 604 |
+
full_url = issue_url
|
| 605 |
+
|
| 606 |
+
# Only include issues created within timeframe
|
| 607 |
+
if created_at:
|
| 608 |
+
try:
|
| 609 |
+
created_dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 610 |
+
if created_dt < start_date:
|
| 611 |
+
continue
|
| 612 |
+
except:
|
| 613 |
+
continue
|
| 614 |
+
|
| 615 |
+
# Deduplicate: only add if we haven't seen this issue for this agent
|
| 616 |
+
if full_url in agent_issue_urls[agent_identifier]:
|
| 617 |
+
continue
|
| 618 |
+
|
| 619 |
+
agent_issue_urls[agent_identifier].add(full_url)
|
| 620 |
|
| 621 |
+
issue_metadata = {
|
| 622 |
+
'url': full_url,
|
| 623 |
+
'created_at': normalize_date_format(created_at),
|
| 624 |
+
'closed_at': normalize_date_format(closed_at) if closed_at else None,
|
| 625 |
+
'state_reason': state_reason,
|
| 626 |
+
}
|
| 627 |
+
|
| 628 |
+
agent_issues[agent_identifier].append(issue_metadata)
|
| 629 |
+
|
| 630 |
+
# Process issues for wanted tracking
|
| 631 |
+
for row in issue_events:
|
| 632 |
+
# Row indices: repo_name=1, issue_url=3, issue_title=4, issue_number=5,
|
| 633 |
+
# issue_created_at=6, issue_closed_at=7, issue_labels=8
|
| 634 |
repo_name = row[1]
|
| 635 |
+
issue_url = row[3]
|
| 636 |
+
title = row[4]
|
| 637 |
+
issue_number = row[5]
|
| 638 |
+
created_at = row[6]
|
| 639 |
+
closed_at = row[7]
|
| 640 |
+
labels_json = row[8]
|
| 641 |
|
| 642 |
if not issue_url or not repo_name:
|
| 643 |
continue
|
|
|
|
| 683 |
'labels': label_names
|
| 684 |
}
|
| 685 |
|
| 686 |
+
# Process PRs for wanted tracking
|
| 687 |
+
for row in pr_events:
|
| 688 |
+
# Row indices: pr_url=15, pr_creator=16, pr_merged_at=17, pr_body=18
|
| 689 |
+
pr_url = row[15]
|
| 690 |
+
pr_creator = row[16]
|
| 691 |
+
merged_at = row[17]
|
| 692 |
+
pr_body = row[18]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
|
| 694 |
if not pr_url or not pr_creator:
|
| 695 |
continue
|
|
|
|
| 716 |
else:
|
| 717 |
issue_to_prs[ref].add(pr_url)
|
| 718 |
|
| 719 |
+
# Process discussions
|
| 720 |
+
for row in discussion_events:
|
| 721 |
+
# Row indices: repo_name=1, discussion_url=19, discussion_creator=20,
|
| 722 |
+
# discussion_created_at=21, discussion_closed_at=22,
|
| 723 |
+
# discussion_state_reason=23, action=24
|
| 724 |
+
repo_name = row[1]
|
| 725 |
+
discussion_url = row[19]
|
| 726 |
+
discussion_creator = row[20]
|
| 727 |
+
discussion_created_at = row[21]
|
| 728 |
+
discussion_closed_at = row[22]
|
| 729 |
+
discussion_state_reason = row[23]
|
| 730 |
+
action = row[24]
|
| 731 |
+
|
| 732 |
+
if not discussion_url or not repo_name:
|
| 733 |
+
continue
|
| 734 |
+
|
| 735 |
+
# Extract org from repo_name
|
| 736 |
+
parts = repo_name.split('/')
|
| 737 |
+
if len(parts) != 2:
|
| 738 |
+
continue
|
| 739 |
+
org = parts[0]
|
| 740 |
+
|
| 741 |
+
# Filter by tracked orgs
|
| 742 |
+
if org not in TRACKED_ORGS:
|
| 743 |
+
continue
|
| 744 |
+
|
| 745 |
+
# Parse discussion creation date to filter by time window
|
| 746 |
+
created_dt = None
|
| 747 |
+
if discussion_created_at:
|
| 748 |
+
try:
|
| 749 |
+
created_dt = datetime.fromisoformat(discussion_created_at.replace('Z', '+00:00'))
|
| 750 |
+
# Only track discussions created on or after start_date
|
| 751 |
+
if created_dt < start_date:
|
| 752 |
+
continue
|
| 753 |
+
except:
|
| 754 |
+
continue
|
| 755 |
+
|
| 756 |
+
# Group by creator (agent identifier)
|
| 757 |
+
# Only track discussions from our agent identifiers
|
| 758 |
+
if discussion_creator not in identifier_set:
|
| 759 |
+
continue
|
| 760 |
+
|
| 761 |
+
# Determine discussion state
|
| 762 |
+
# A discussion is "resolved" if it has an answer chosen OR is marked answered
|
| 763 |
+
is_resolved = False
|
| 764 |
+
if discussion_closed_at:
|
| 765 |
+
is_resolved = True
|
| 766 |
+
elif discussion_state_reason and 'answered' in discussion_state_reason.lower():
|
| 767 |
+
is_resolved = True
|
| 768 |
+
|
| 769 |
+
# Store discussion metadata
|
| 770 |
+
discussion_meta = {
|
| 771 |
+
'url': discussion_url,
|
| 772 |
+
'repo': repo_name,
|
| 773 |
+
'created_at': normalize_date_format(discussion_created_at),
|
| 774 |
+
'closed_at': normalize_date_format(discussion_closed_at) if discussion_closed_at else None,
|
| 775 |
+
'state': 'resolved' if is_resolved else 'open',
|
| 776 |
+
'state_reason': discussion_state_reason
|
| 777 |
+
}
|
| 778 |
+
|
| 779 |
+
# Group by agent
|
| 780 |
+
if discussion_creator not in discussions_by_agent:
|
| 781 |
+
discussions_by_agent[discussion_creator] = []
|
| 782 |
+
discussions_by_agent[discussion_creator].append(discussion_meta)
|
| 783 |
|
| 784 |
+
print(f"✓ {len(agent_issue_events)} agent issues, {len(issue_events)} wanted issues, {len(pr_events)} PRs, {len(discussion_events)} discussions")
|
|
|
|
| 785 |
|
| 786 |
except Exception as e:
|
| 787 |
print(f"\n ✗ Batch {batch_num} error: {str(e)}")
|
| 788 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
# Move to next batch
|
| 791 |
current_date = batch_end + timedelta(days=1)
|
|
|
|
| 862 |
except:
|
| 863 |
pass
|
| 864 |
|
| 865 |
+
print(f" ✓ Found {sum(len(issues) for issues in agent_issues.values())} agent-assigned issues across {len(agent_issues)} agents")
|
| 866 |
print(f" ✓ Found {len(wanted_open)} long-standing open wanted issues")
|
| 867 |
print(f" ✓ Found {sum(len(issues) for issues in wanted_resolved.values())} resolved wanted issues across {len(wanted_resolved)} agents")
|
| 868 |
+
print(f" ✓ Found {sum(len(discussions) for discussions in discussions_by_agent.values())} discussions across {len(discussions_by_agent)} agents")
|
| 869 |
|
| 870 |
return {
|
| 871 |
+
'agent_issues': dict(agent_issues),
|
| 872 |
'wanted_open': wanted_open,
|
| 873 |
+
'wanted_resolved': dict(wanted_resolved),
|
| 874 |
+
'agent_discussions': dict(discussions_by_agent)
|
| 875 |
}
|
| 876 |
|
| 877 |
|
|
|
|
| 1071 |
}
|
| 1072 |
|
| 1073 |
|
| 1074 |
+
def calculate_discussion_stats_from_metadata(metadata_list):
|
| 1075 |
+
"""Calculate statistics from a list of discussion metadata."""
|
| 1076 |
+
total_discussions = len(metadata_list)
|
| 1077 |
+
resolved = sum(1 for discussion_meta in metadata_list if discussion_meta.get('state') == 'resolved')
|
| 1078 |
+
|
| 1079 |
+
# Resolved rate = resolved / total * 100
|
| 1080 |
+
resolved_rate = (resolved / total_discussions * 100) if total_discussions > 0 else 0
|
| 1081 |
+
|
| 1082 |
+
return {
|
| 1083 |
+
'total_discussions': total_discussions,
|
| 1084 |
+
'resolved_discussions': resolved,
|
| 1085 |
+
'discussion_resolved_rate': round(resolved_rate, 2),
|
| 1086 |
+
}
|
| 1087 |
+
|
| 1088 |
+
|
| 1089 |
+
def calculate_monthly_metrics_by_agent_discussions(all_discussions_dict, agents):
|
| 1090 |
+
"""Calculate monthly metrics for discussions for all agents for visualization."""
|
| 1091 |
+
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 1092 |
+
|
| 1093 |
+
if not all_discussions_dict:
|
| 1094 |
+
return {'agents': [], 'months': [], 'data': {}}
|
| 1095 |
+
|
| 1096 |
+
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 1097 |
+
|
| 1098 |
+
for agent_identifier, metadata_list in all_discussions_dict.items():
|
| 1099 |
+
for discussion_meta in metadata_list:
|
| 1100 |
+
created_at = discussion_meta.get('created_at')
|
| 1101 |
+
|
| 1102 |
+
if not created_at:
|
| 1103 |
+
continue
|
| 1104 |
+
|
| 1105 |
+
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 1106 |
+
|
| 1107 |
+
try:
|
| 1108 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 1109 |
+
month_key = f"{dt.year}-{dt.month:02d}"
|
| 1110 |
+
agent_month_data[agent_name][month_key].append(discussion_meta)
|
| 1111 |
+
except Exception as e:
|
| 1112 |
+
print(f"Warning: Could not parse discussion date '{created_at}': {e}")
|
| 1113 |
+
continue
|
| 1114 |
+
|
| 1115 |
+
all_months = set()
|
| 1116 |
+
for agent_data in agent_month_data.values():
|
| 1117 |
+
all_months.update(agent_data.keys())
|
| 1118 |
+
months = sorted(list(all_months))
|
| 1119 |
+
|
| 1120 |
+
result_data = {}
|
| 1121 |
+
for agent_name, month_dict in agent_month_data.items():
|
| 1122 |
+
resolved_rates = []
|
| 1123 |
+
total_discussions_list = []
|
| 1124 |
+
resolved_discussions_list = []
|
| 1125 |
+
|
| 1126 |
+
for month in months:
|
| 1127 |
+
discussions_in_month = month_dict.get(month, [])
|
| 1128 |
+
|
| 1129 |
+
resolved_count = sum(1 for discussion in discussions_in_month if discussion.get('state') == 'resolved')
|
| 1130 |
+
total_count = len(discussions_in_month)
|
| 1131 |
+
|
| 1132 |
+
# Resolved rate = resolved / total * 100
|
| 1133 |
+
resolved_rate = (resolved_count / total_count * 100) if total_count > 0 else None
|
| 1134 |
+
|
| 1135 |
+
resolved_rates.append(resolved_rate)
|
| 1136 |
+
total_discussions_list.append(total_count)
|
| 1137 |
+
resolved_discussions_list.append(resolved_count)
|
| 1138 |
+
|
| 1139 |
+
result_data[agent_name] = {
|
| 1140 |
+
'resolved_rates': resolved_rates,
|
| 1141 |
+
'total_discussions': total_discussions_list,
|
| 1142 |
+
'resolved_discussions': resolved_discussions_list
|
| 1143 |
+
}
|
| 1144 |
+
|
| 1145 |
+
agents_list = sorted(list(agent_month_data.keys()))
|
| 1146 |
+
|
| 1147 |
+
return {
|
| 1148 |
+
'agents': agents_list,
|
| 1149 |
+
'months': months,
|
| 1150 |
+
'data': result_data
|
| 1151 |
+
}
|
| 1152 |
+
|
| 1153 |
+
|
| 1154 |
+
def construct_leaderboard_from_metadata(all_metadata_dict, agents, wanted_resolved_dict=None, discussions_dict=None):
|
| 1155 |
+
"""Construct leaderboard from in-memory issue metadata and discussion metadata.
|
| 1156 |
|
| 1157 |
Args:
|
| 1158 |
all_metadata_dict: Dictionary mapping agent ID to list of issue metadata (agent-assigned issues)
|
| 1159 |
agents: List of agent metadata
|
| 1160 |
wanted_resolved_dict: Optional dictionary mapping agent ID to list of resolved wanted issues
|
| 1161 |
+
discussions_dict: Optional dictionary mapping agent ID to list of discussion metadata
|
| 1162 |
"""
|
| 1163 |
if not agents:
|
| 1164 |
print("Error: No agents found")
|
|
|
|
| 1167 |
if wanted_resolved_dict is None:
|
| 1168 |
wanted_resolved_dict = {}
|
| 1169 |
|
| 1170 |
+
if discussions_dict is None:
|
| 1171 |
+
discussions_dict = {}
|
| 1172 |
+
|
| 1173 |
cache_dict = {}
|
| 1174 |
|
| 1175 |
for agent in agents:
|
|
|
|
| 1182 |
# Add wanted issues count
|
| 1183 |
resolved_wanted = len(wanted_resolved_dict.get(identifier, []))
|
| 1184 |
|
| 1185 |
+
# Add discussion stats
|
| 1186 |
+
discussion_metadata = discussions_dict.get(identifier, [])
|
| 1187 |
+
discussion_stats = calculate_discussion_stats_from_metadata(discussion_metadata)
|
| 1188 |
+
|
| 1189 |
cache_dict[identifier] = {
|
| 1190 |
'name': agent_name,
|
| 1191 |
'website': agent.get('website', 'N/A'),
|
| 1192 |
'github_identifier': identifier,
|
| 1193 |
**stats,
|
| 1194 |
+
'resolved_wanted_issues': resolved_wanted,
|
| 1195 |
+
**discussion_stats
|
| 1196 |
}
|
| 1197 |
|
| 1198 |
return cache_dict
|
| 1199 |
|
| 1200 |
|
| 1201 |
+
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics, wanted_issues=None, discussion_monthly_metrics=None):
|
| 1202 |
+
"""Save leaderboard data, monthly metrics, wanted issues, and discussion metrics to HuggingFace dataset."""
|
| 1203 |
try:
|
| 1204 |
token = get_hf_token()
|
| 1205 |
if not token:
|
|
|
|
| 1210 |
if wanted_issues is None:
|
| 1211 |
wanted_issues = []
|
| 1212 |
|
| 1213 |
+
if discussion_monthly_metrics is None:
|
| 1214 |
+
discussion_monthly_metrics = {'agents': [], 'months': [], 'data': {}}
|
| 1215 |
+
|
| 1216 |
combined_data = {
|
| 1217 |
'metadata': {
|
| 1218 |
'last_updated': datetime.now(timezone.utc).isoformat(),
|
|
|
|
| 1223 |
},
|
| 1224 |
'leaderboard': leaderboard_dict,
|
| 1225 |
'monthly_metrics': monthly_metrics,
|
| 1226 |
+
'wanted_issues': wanted_issues,
|
| 1227 |
+
'discussion_monthly_metrics': discussion_monthly_metrics
|
| 1228 |
}
|
| 1229 |
|
| 1230 |
with open(LEADERBOARD_FILENAME, 'w') as f:
|
|
|
|
| 1288 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1289 |
|
| 1290 |
try:
|
| 1291 |
+
# USE UNIFIED STREAMING FUNCTION FOR ISSUES, WANTED, AND DISCUSSIONS
|
| 1292 |
+
results = fetch_all_metadata_streaming(
|
| 1293 |
conn, identifiers, start_date, end_date
|
| 1294 |
)
|
| 1295 |
|
| 1296 |
agent_issues = results['agent_issues']
|
| 1297 |
wanted_open = results['wanted_open']
|
| 1298 |
wanted_resolved = results['wanted_resolved']
|
| 1299 |
+
agent_discussions = results['agent_discussions']
|
| 1300 |
|
| 1301 |
except Exception as e:
|
| 1302 |
print(f"Error during DuckDB fetch: {str(e)}")
|
|
|
|
| 1308 |
print(f"\n[4/4] Saving leaderboard...")
|
| 1309 |
|
| 1310 |
try:
|
| 1311 |
+
leaderboard_dict = construct_leaderboard_from_metadata(
|
| 1312 |
+
agent_issues, agents, wanted_resolved, agent_discussions
|
| 1313 |
+
)
|
| 1314 |
monthly_metrics = calculate_monthly_metrics_by_agent(agent_issues, agents)
|
| 1315 |
+
discussion_monthly_metrics = calculate_monthly_metrics_by_agent_discussions(
|
| 1316 |
+
agent_discussions, agents
|
| 1317 |
+
)
|
| 1318 |
+
save_leaderboard_data_to_hf(
|
| 1319 |
+
leaderboard_dict, monthly_metrics, wanted_open, discussion_monthly_metrics
|
| 1320 |
+
)
|
| 1321 |
|
| 1322 |
except Exception as e:
|
| 1323 |
print(f"Error saving leaderboard: {str(e)}")
|