Spaces:
Sleeping
Sleeping
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Union | |
| import evaluate | |
| import datasets | |
| import numpy as np | |
| from seametrics.horizon.utils import * | |
| _CITATION = """\ | |
| @InProceedings{huggingface:module, | |
| title = {Horizon Metrics}, | |
| authors={huggingface, Inc.}, | |
| year={2024} | |
| } | |
| """ | |
| # TODO: Add description of the module here | |
| _DESCRIPTION = """\ | |
| This metric is intended to calculate horizon prediction metrics.""" | |
| # TODO: Add description of the arguments of the module here | |
| _KWARGS_DESCRIPTION = """ | |
| Calculates how good are predictions given some references, using certain scores | |
| Args: | |
| predictions: list of predictions for each image. Each prediction | |
| should be a nested array like this: | |
| - [[x1, y1], [x2, y2]] | |
| references: list of references for each image. Each reference | |
| should be a nested array like this: | |
| - [[x1, y1], [x2, y2]] | |
| Returns: | |
| dict containing following metrics: | |
| 'average_slope_error': Measures the average difference in slope between the predicted and ground truth horizon. | |
| 'average_midpoint_error': Calculates the average difference in midpoint position between the predicted and ground truth horizon. | |
| 'stddev_slope_error': Indicates the variability of errors in slope between the predicted and ground truth horizon. | |
| 'stddev_midpoint_error': Quantifies the variability of errors in midpoint position between the predicted and ground truth horizon. | |
| 'max_slope_error': Represents the maximum difference in slope between the predicted and ground truth horizon. | |
| 'max_midpoint_error': Indicates the maximum difference in midpoint position between the predicted and ground truth horizon. | |
| 'num_slope_error_jumps': Calculates the differences between errors in successive frames for the slope. It then counts the number of jumps in these errors by comparing the absolute differences to a specified threshold. | |
| 'num_midpoint_error_jumps': Calculates the differences between errors in successive frames for the midpoint. It then counts the number of jumps in these errors by comparing the absolute differences to a specified threshold. | |
| Examples: | |
| >>> ground_truth_points = [[[0.0, 0.5384765625], [1.0, 0.4931640625]], | |
| [[0.0, 0.53796875], [1.0, 0.4928515625]], | |
| [[0.0, 0.5374609375], [1.0, 0.4925390625]], | |
| [[0.0, 0.536953125], [1.0, 0.4922265625]], | |
| [[0.0, 0.5364453125], [1.0, 0.4919140625]]] | |
| >>> prediction_points = [[[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]], | |
| [[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]], | |
| [[0.0, 0.523573113510805], [1.0, 0.47642688648919496]], | |
| [[0.0, 0.5200016849393765], [1.0, 0.4728554579177664]], | |
| [[0.0, 0.523573113510805], [1.0, 0.47642688648919496]]] | |
| >>> module = evaluate.load("SEA-AI/horizon-metrics", vertical_fov_degrees=25.6, height=512, roll_threshold=0.5, pitch_threshold=0.1) | |
| >>> module.add(predictions=ground_truth_points, references=prediction_points) | |
| >>> module.compute() | |
| >>> {'average_slope_error': 0.014823194839790999, | |
| 'average_midpoint_error': 0.014285714285714301, | |
| 'stddev_slope_error': 0.01519178791378349, | |
| 'stddev_midpoint_error': 0.0022661781575342445, | |
| 'max_slope_error': 0.033526146567062376, | |
| 'max_midpoint_error': 0.018161272321428612, | |
| 'num_slope_error_jumps': 1, | |
| 'num_midpoint_error_jumps': 1} | |
| """ | |
| class HorizonMetrics(evaluate.Metric): | |
| """ | |
| HorizonMetrics is a metric class that calculates horizon prediction metrics. | |
| Args: | |
| vertical_fov_degrees (float): Vertical field of view in degrees. | |
| height (int): Height of the image. | |
| roll_threshold (float, optional): Threshold for roll angle. Defaults to 0.5. | |
| pitch_threshold (float, optional): Threshold for pitch angle. Defaults to 0.1. | |
| **kwargs: Additional keyword arguments. | |
| Attributes: | |
| slope_threshold (float): Threshold for slope calculated from roll threshold. | |
| midpoint_threshold (float): Threshold for midpoint calculated from pitch threshold. | |
| predictions (list): List of predicted horizons. | |
| ground_truth_det (list): List of ground truth horizons. | |
| slope_error_list (list): List of slope errors. | |
| midpoint_error_list (list): List of midpoint errors. | |
| Methods: | |
| _info(): Returns the metric information. | |
| add(predictions, references, **kwargs): Updates the predictions and ground truth detections. | |
| _compute(predictions, references, **kwargs): Computes the horizon error across the sequence. | |
| """ | |
| def __init__(self, | |
| vertical_fov_degrees: Union[float, int, None], | |
| height: float, | |
| roll_threshold=0.5, | |
| pitch_threshold=0.1, | |
| **kwargs): | |
| super().__init__(**kwargs) | |
| self.slope_threshold = roll_to_slope(roll_threshold) | |
| self.midpoint_threshold = pitch_to_midpoint(pitch_threshold, | |
| vertical_fov_degrees) | |
| self.predictions = None | |
| self.ground_truth_det = None | |
| self.slope_error_list = [] | |
| self.midpoint_error_list = [] | |
| self.height = height | |
| self.vertical_fov_degrees = vertical_fov_degrees | |
| def _info(self): | |
| """ | |
| Returns the metric information. | |
| Returns: | |
| MetricInfo: The metric information. | |
| """ | |
| return evaluate.MetricInfo( | |
| # This is the description that will appear on the modules page. | |
| module_type="metric", | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| # This defines the format of each prediction and reference | |
| features=datasets.Features({ | |
| 'predictions': | |
| datasets.Sequence( | |
| datasets.Sequence( | |
| datasets.Sequence(datasets.Value("float")))), | |
| 'references': | |
| datasets.Sequence( | |
| datasets.Sequence( | |
| datasets.Sequence(datasets.Value("float")))), | |
| }), | |
| codebase_urls=["http://github.com/path/to/codebase/of/new_module"]) | |
| def add(self, *, predictions, references, **kwargs): | |
| """ | |
| Updates the predictions and ground truth detections. | |
| Parameters: | |
| predictions (list): List of predicted horizons. | |
| references (list): List of ground truth horizons. | |
| **kwargs: Additional keyword arguments. | |
| """ | |
| super(evaluate.Metric, self).add(prediction=predictions, | |
| references=references, | |
| **kwargs) | |
| self.predictions = predictions | |
| self.ground_truth_det = references | |
| def _compute(self, *, predictions, references, **kwargs): | |
| """ | |
| Computes the horizon error across the sequence. | |
| Returns: | |
| float: The computed horizon error. | |
| """ | |
| tp = 0 | |
| fp = 0 | |
| fn = 0 | |
| # calculate erros and store values in slope_error_list and midpoint_error_list | |
| for annotated_horizon, proposed_horizon in zip(self.ground_truth_det, | |
| self.predictions): | |
| if annotated_horizon is None and proposed_horizon != None: | |
| fp += 1 | |
| elif annotated_horizon != None and proposed_horizon != None: | |
| tp += 1 | |
| elif annotated_horizon != None and proposed_horizon is None: | |
| fn += 1 | |
| if annotated_horizon is None or proposed_horizon is None: | |
| continue | |
| slope_error, midpoint_error = calculate_horizon_error( | |
| annotated_horizon, proposed_horizon) | |
| self.slope_error_list.append(slope_error) | |
| self.midpoint_error_list.append(midpoint_error) | |
| # calculate slope errors, midpoint errors and jumps | |
| result = calculate_horizon_error_across_sequence( | |
| self.slope_error_list, self.midpoint_error_list, | |
| self.slope_threshold, self.midpoint_threshold, | |
| self.vertical_fov_degrees, self.height) | |
| # calulcate detection rate | |
| detected_horizon_count = len( | |
| self.predictions) - self.predictions.count(None) | |
| detected_gt_count = len( | |
| self.ground_truth_det) - self.ground_truth_det.count(None) | |
| detection_rate = detected_horizon_count / detected_gt_count | |
| result['detection_rate'] = detection_rate | |
| result['predicted_samples'] = detected_horizon_count | |
| result['recall'] = tp/(tp+fn+1e-5) | |
| result['precision'] = tp/(tp+fp+1e-5) | |
| result['samples'] = detected_gt_count | |
| return result | |