Spaces:
Sleeping
Sleeping
Enhance flagging functionality in app.py and flagging.py by adding a subscription option and improving metadata handling for user information.
3928c4d
| import csv | |
| import json | |
| import uuid | |
| from collections import OrderedDict | |
| from pathlib import Path | |
| from typing import Any, Sequence | |
| import filelock | |
| import huggingface_hub | |
| import gradio as gr | |
| from gradio import utils | |
| from gradio.flagging import client_utils, FlaggingCallback | |
| from gradio_client.documentation import document | |
| from gradio.components import Component | |
| class HuggingFaceDatasetSaver(FlaggingCallback): | |
| """ | |
| A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset. | |
| Example: | |
| import gradio as gr | |
| hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes") | |
| def image_classifier(inp): | |
| return {'cat': 0.3, 'dog': 0.7} | |
| demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label", | |
| allow_flagging="manual", flagging_callback=hf_writer) | |
| Guides: using-flagging | |
| """ | |
| def __init__( | |
| self, | |
| hf_token: str, | |
| dataset_name: str, | |
| private: bool = False, | |
| info_filename: str = "dataset_info.json", | |
| separate_dirs: bool = False, | |
| ): | |
| """ | |
| Parameters: | |
| hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one). | |
| dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1". | |
| private: Whether the dataset should be private (defaults to False). | |
| info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json"). | |
| separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use. | |
| """ | |
| self.hf_token = hf_token | |
| self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow) | |
| self.dataset_private = private | |
| self.info_filename = info_filename | |
| self.separate_dirs = separate_dirs | |
| def setup(self, components: Sequence[Component], flagging_dir: str): | |
| """ | |
| Params: | |
| flagging_dir (str): local directory where the dataset is cloned, | |
| updated, and pushed from. | |
| """ | |
| # Setup dataset on the Hub | |
| self.dataset_id = huggingface_hub.create_repo( | |
| repo_id=self.dataset_id, | |
| token=self.hf_token, | |
| private=self.dataset_private, | |
| repo_type="dataset", | |
| exist_ok=True, | |
| ).repo_id | |
| path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv" | |
| huggingface_hub.metadata_update( | |
| repo_id=self.dataset_id, | |
| repo_type="dataset", | |
| metadata={ | |
| "configs": [ | |
| { | |
| "config_name": "default", | |
| "data_files": [{"split": "train", "path": path_glob}], | |
| } | |
| ] | |
| }, | |
| overwrite=True, | |
| token=self.hf_token, | |
| ) | |
| # Setup flagging dir | |
| self.components = components | |
| self.dataset_dir = ( | |
| Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1] | |
| ) | |
| self.dataset_dir.mkdir(parents=True, exist_ok=True) | |
| self.infos_file = self.dataset_dir / self.info_filename | |
| # Download remote files to local | |
| remote_files = [self.info_filename] | |
| if not self.separate_dirs: | |
| # No separate dirs => means all data is in the same CSV file => download it to get its current content | |
| remote_files.append("data.csv") | |
| for filename in remote_files: | |
| try: | |
| huggingface_hub.hf_hub_download( | |
| repo_id=self.dataset_id, | |
| repo_type="dataset", | |
| filename=filename, | |
| local_dir=self.dataset_dir, | |
| token=self.hf_token, | |
| ) | |
| except huggingface_hub.utils.EntryNotFoundError: | |
| pass | |
| def flag( # pylint: disable=arguments-differ | |
| self, | |
| flag_data: list[Any], | |
| metadata: dict[str, str] | None = None, | |
| ) -> int: | |
| if self.separate_dirs: | |
| # JSONL files to support dataset preview on the Hub | |
| unique_id = str(uuid.uuid4()) | |
| components_dir = self.dataset_dir / unique_id | |
| data_file = components_dir / "metadata.jsonl" | |
| path_in_repo = unique_id # upload in sub folder (safer for concurrency) | |
| else: | |
| # Unique CSV file | |
| components_dir = self.dataset_dir | |
| data_file = components_dir / "data.csv" | |
| path_in_repo = None # upload at root level | |
| return self._flag_in_dir( | |
| data_file=data_file, | |
| components_dir=components_dir, | |
| path_in_repo=path_in_repo, | |
| flag_data=flag_data, | |
| metadata=metadata if metadata is not None else {}, | |
| ) | |
| def _flag_in_dir( | |
| self, | |
| data_file: Path, | |
| components_dir: Path, | |
| path_in_repo: str | None, | |
| flag_data: list[Any], | |
| metadata: dict[str, str], | |
| ) -> int: | |
| # Deserialize components (write images/audio to files) | |
| features, row = self._deserialize_components( | |
| components_dir, flag_data, metadata | |
| ) | |
| # Write generic info to dataset_infos.json + upload | |
| with filelock.FileLock(str(self.infos_file) + ".lock"): | |
| if not self.infos_file.exists(): | |
| self.infos_file.write_text( | |
| json.dumps({"flagged": {"features": features}}) | |
| ) | |
| huggingface_hub.upload_file( | |
| repo_id=self.dataset_id, | |
| repo_type="dataset", | |
| token=self.hf_token, | |
| path_in_repo=self.infos_file.name, | |
| path_or_fileobj=self.infos_file, | |
| ) | |
| headers = list(features.keys()) | |
| if not self.separate_dirs: | |
| with filelock.FileLock(components_dir / ".lock"): | |
| sample_nb = self._save_as_csv(data_file, headers=headers, row=row) | |
| sample_name = str(sample_nb) | |
| huggingface_hub.upload_folder( | |
| repo_id=self.dataset_id, | |
| repo_type="dataset", | |
| commit_message=f"Flagged sample #{sample_name}", | |
| path_in_repo=path_in_repo, | |
| ignore_patterns="*.lock", | |
| folder_path=components_dir, | |
| token=self.hf_token, | |
| ) | |
| else: | |
| sample_name = self._save_as_jsonl(data_file, headers=headers, row=row) | |
| sample_nb = len( | |
| [path for path in self.dataset_dir.iterdir() if path.is_dir()] | |
| ) | |
| huggingface_hub.upload_folder( | |
| repo_id=self.dataset_id, | |
| repo_type="dataset", | |
| commit_message=f"Flagged sample #{sample_name}", | |
| path_in_repo=path_in_repo, | |
| ignore_patterns="*.lock", | |
| folder_path=components_dir, | |
| token=self.hf_token, | |
| ) | |
| return sample_nb | |
| def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int: | |
| """Save data as CSV and return the sample name (row number).""" | |
| is_new = not data_file.exists() | |
| with data_file.open("a", newline="", encoding="utf-8") as csvfile: | |
| writer = csv.writer(csvfile) | |
| # Write CSV headers if new file | |
| if is_new: | |
| writer.writerow(utils.sanitize_list_for_csv(headers)) | |
| # Write CSV row for flagged sample | |
| writer.writerow(utils.sanitize_list_for_csv(row)) | |
| with data_file.open(encoding="utf-8") as csvfile: | |
| return sum(1 for _ in csv.reader(csvfile)) - 1 | |
| def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str: | |
| """Save data as JSONL and return the sample name (uuid).""" | |
| Path.mkdir(data_file.parent, parents=True, exist_ok=True) | |
| with open(data_file, "w", encoding="utf-8") as f: | |
| json.dump(dict(zip(headers, row)), f) | |
| return data_file.parent.name | |
| def _deserialize_components( | |
| self, | |
| data_dir: Path, | |
| flag_data: list[Any], | |
| metadata: dict[str, str], | |
| ) -> tuple[dict[Any, Any], list[Any]]: | |
| """Deserialize components and return the corresponding row for the flagged sample. | |
| Images/audio are saved to disk as individual files. | |
| """ | |
| # Components that can have a preview on dataset repos | |
| file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"} | |
| # Generate the row corresponding to the flagged sample | |
| features = OrderedDict() | |
| row = [] | |
| for component, sample in zip(self.components, flag_data): | |
| # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-) | |
| label = component.label or "" | |
| save_dir = data_dir / client_utils.strip_invalid_filename_characters(label) | |
| save_dir.mkdir(exist_ok=True, parents=True) | |
| deserialized = utils.simplify_file_data_in_str( | |
| component.flag(sample, save_dir) | |
| ) | |
| # Add deserialized object to row | |
| features[label] = {"dtype": "string", "_type": "Value"} | |
| try: | |
| deserialized_path = Path(deserialized) | |
| if not deserialized_path.exists(): | |
| raise FileNotFoundError(f"File {deserialized} not found") | |
| row.append(str(deserialized_path.relative_to(self.dataset_dir))) | |
| except (FileNotFoundError, TypeError, ValueError, OSError): | |
| deserialized = "" if deserialized is None else str(deserialized) | |
| row.append(deserialized) | |
| # If component is eligible for a preview, add the URL of the file | |
| # Be mindful that images and audio can be None | |
| if isinstance(component, tuple(file_preview_types)): # type: ignore | |
| for _component, _type in file_preview_types.items(): | |
| if isinstance(component, _component): | |
| features[label + " file"] = {"_type": _type} | |
| break | |
| if deserialized: | |
| path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL | |
| Path(deserialized).relative_to(self.dataset_dir) | |
| ).replace("\\", "/") | |
| row.append( | |
| huggingface_hub.hf_hub_url( | |
| repo_id=self.dataset_id, | |
| filename=path_in_repo, | |
| repo_type="dataset", | |
| ) | |
| ) | |
| else: | |
| row.append("") | |
| type_to_dtype = { | |
| bool: "boolean", | |
| str: "string", | |
| int: "integer", | |
| float: "float", | |
| } | |
| for key, value in metadata.items(): | |
| features[key] = {"dtype": type_to_dtype[type(value)], "_type": "Value"} | |
| row.append(value) | |
| return features, row | |
| class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver): | |
| """ | |
| Custom HuggingFaceDatasetSaver to save images/audio to disk. | |
| Gradio's implementation seems to have a bug. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def _deserialize_components( | |
| self, | |
| data_dir: Path, | |
| flag_data: list[Any], | |
| metadata: dict[str, str], | |
| ) -> tuple[dict[Any, Any], list[Any]]: | |
| """Deserialize components and return the corresponding row for the flagged sample. | |
| Images/audio are saved to disk as individual files. | |
| """ | |
| # Components that can have a preview on dataset repos | |
| file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"} | |
| # Generate the row corresponding to the flagged sample | |
| features = OrderedDict() | |
| row = [] | |
| for component, sample in zip(self.components, flag_data): | |
| # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-) | |
| label = component.label or "" | |
| save_dir = data_dir / client_utils.strip_invalid_filename_characters(label) | |
| save_dir.mkdir(exist_ok=True, parents=True) | |
| deserialized = component.flag(sample, save_dir) | |
| if isinstance(component, gr.Image) and isinstance(sample, dict): | |
| print(f"Before dirty hack: {deserialized=}") | |
| deserialized = json.loads(deserialized)["path"] # dirty hack | |
| print(f"After dirty hack: {deserialized=}") | |
| # Add deserialized object to row | |
| features[label] = {"dtype": "string", "_type": "Value"} | |
| try: | |
| assert Path(deserialized).exists() | |
| row.append(str(Path(deserialized).relative_to(self.dataset_dir))) | |
| except (AssertionError, TypeError, ValueError): | |
| deserialized = "" if deserialized is None else str(deserialized) | |
| row.append(deserialized) | |
| # If component is eligible for a preview, add the URL of the file | |
| # Be mindful that images and audio can be None | |
| if isinstance(component, tuple(file_preview_types)): # type: ignore | |
| for _component, _type in file_preview_types.items(): | |
| if isinstance(component, _component): | |
| features[label + " file"] = {"_type": _type} | |
| break | |
| if deserialized: | |
| path_in_repo = str( | |
| # returned filepath is absolute, we want it relative to compute URL | |
| Path(deserialized).relative_to(self.dataset_dir) | |
| ).replace("\\", "/") | |
| row.append( | |
| huggingface_hub.hf_hub_url( | |
| repo_id=self.dataset_id, | |
| filename=path_in_repo, | |
| repo_type="dataset", | |
| ) | |
| ) | |
| else: | |
| row.append("") | |
| for key, value in metadata.items(): | |
| features[key] = {"dtype": "string", "_type": "Value"} | |
| row.append(value) | |
| return features, row | |