Rodrigo_Cobo
commited on
Commit
·
98d2c0f
1
Parent(s):
10c55f7
fix jpeg error
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import numpy as np
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
-
def update(slider, img):
|
| 11 |
|
| 12 |
if not os.path.exists('temp'):
|
| 13 |
os.system('mkdir temp')
|
|
@@ -16,7 +16,7 @@ def update(slider, img):
|
|
| 16 |
|
| 17 |
img.save(filename, "JPEG")
|
| 18 |
|
| 19 |
-
model_type = "DPT_Hybrid"
|
| 20 |
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
| 21 |
|
| 22 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
@@ -49,13 +49,8 @@ def update(slider, img):
|
|
| 49 |
|
| 50 |
formatted = (output * 255 / np.max(output)).astype('uint8')
|
| 51 |
out_im = Image.fromarray(formatted)
|
| 52 |
-
|
| 53 |
-
#out_im = Image.fromarray(output)
|
| 54 |
out_im.save("temp/image_depth.jpeg", "JPEG")
|
| 55 |
|
| 56 |
-
#cv2.imwrite("temp/image_depth.jpeg", output)
|
| 57 |
-
#plt.imsave("temp/image_depth.jpeg", output)
|
| 58 |
-
|
| 59 |
return f'temp/image_depth.jpeg'
|
| 60 |
|
| 61 |
|
|
@@ -64,6 +59,10 @@ with gr.Blocks() as demo:
|
|
| 64 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
| 65 |
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
with gr.Row():
|
| 68 |
inp.append(gr.Image(type="pil", label="Input"))
|
| 69 |
out = gr.Image(type="file", label="Output")
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
+
def update(slider, model_type, img):
|
| 11 |
|
| 12 |
if not os.path.exists('temp'):
|
| 13 |
os.system('mkdir temp')
|
|
|
|
| 16 |
|
| 17 |
img.save(filename, "JPEG")
|
| 18 |
|
| 19 |
+
#model_type = "DPT_Hybrid"
|
| 20 |
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
| 21 |
|
| 22 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
|
| 49 |
|
| 50 |
formatted = (output * 255 / np.max(output)).astype('uint8')
|
| 51 |
out_im = Image.fromarray(formatted)
|
|
|
|
|
|
|
| 52 |
out_im.save("temp/image_depth.jpeg", "JPEG")
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
return f'temp/image_depth.jpeg'
|
| 55 |
|
| 56 |
|
|
|
|
| 59 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
| 60 |
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
|
| 61 |
|
| 62 |
+
midas_models = ["DPT_Large","DPT_Hybrid","MiDaS_small"]
|
| 63 |
+
|
| 64 |
+
inp.append(gr.inputs.Dropdown(midas_models, default="MiDaS_small", label="Midas_model_type"))
|
| 65 |
+
|
| 66 |
with gr.Row():
|
| 67 |
inp.append(gr.Image(type="pil", label="Input"))
|
| 68 |
out = gr.Image(type="file", label="Output")
|