Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -296,8 +296,8 @@ if (should_train_model=='1'): #train model
|
|
| 296 |
model.config.label_mapping = label_mapping
|
| 297 |
|
| 298 |
# Save the model and tokenizer
|
| 299 |
-
model.save_pretrained(f"./{model_save_path}
|
| 300 |
-
tokenizer.save_pretrained(f"./{model_save_path}
|
| 301 |
|
| 302 |
#for push repository
|
| 303 |
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
|
@@ -315,35 +315,19 @@ if (should_train_model=='1'): #train model
|
|
| 315 |
# Upload the model and tokenizer to the Hugging Face repository
|
| 316 |
|
| 317 |
upload_folder(
|
| 318 |
-
folder_path=f"{model_save_path}
|
| 319 |
-
path_in_repo=f"{model_save_path}
|
| 320 |
repo_id=repo_name,
|
| 321 |
token=api_token,
|
| 322 |
commit_message="Push model",
|
| 323 |
#overwrite=True # Force overwrite existing files
|
| 324 |
)
|
| 325 |
-
|
| 326 |
-
upload_folder(
|
| 327 |
-
folder_path=f"{model_save_path}_tokenizer",
|
| 328 |
-
path_in_repo=f"{model_save_path}_tokenizer",
|
| 329 |
-
repo_id=repo_name,
|
| 330 |
-
token=api_token,
|
| 331 |
-
commit_message="Push tokenizer",
|
| 332 |
-
#overwrite=True # Force overwrite existing files
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
url = "http://210.1.253.35:200/api/hello" # Example API
|
| 336 |
-
response = requests.get(url, timeout=120)
|
| 337 |
-
|
| 338 |
-
if response.status_code == 200:
|
| 339 |
-
jsonify({"message": "Hello, World!"})
|
| 340 |
-
else:
|
| 341 |
-
print(f"Error: {response.status_code}")
|
| 342 |
|
| 343 |
else:
|
| 344 |
print('Load Pre-trained')
|
| 345 |
-
model_save_path = f"./{model_save_path}
|
| 346 |
-
tokenizer_save_path = f"./{model_save_path}
|
|
|
|
| 347 |
# RobertaTokenizer.from_pretrained(model_save_path)
|
| 348 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 349 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
|
|
|
| 296 |
model.config.label_mapping = label_mapping
|
| 297 |
|
| 298 |
# Save the model and tokenizer
|
| 299 |
+
model.save_pretrained(f"./{model_save_path}")
|
| 300 |
+
tokenizer.save_pretrained(f"./{model_save_path}")
|
| 301 |
|
| 302 |
#for push repository
|
| 303 |
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
|
|
|
| 315 |
# Upload the model and tokenizer to the Hugging Face repository
|
| 316 |
|
| 317 |
upload_folder(
|
| 318 |
+
folder_path=f"{model_save_path}",
|
| 319 |
+
path_in_repo=f"{model_save_path}",
|
| 320 |
repo_id=repo_name,
|
| 321 |
token=api_token,
|
| 322 |
commit_message="Push model",
|
| 323 |
#overwrite=True # Force overwrite existing files
|
| 324 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
else:
|
| 327 |
print('Load Pre-trained')
|
| 328 |
+
model_save_path = f"./{model_save_path}"
|
| 329 |
+
tokenizer_save_path = f"./{model_save_path}"
|
| 330 |
+
|
| 331 |
# RobertaTokenizer.from_pretrained(model_save_path)
|
| 332 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 333 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|