Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -97,19 +97,8 @@ if (runModel=='1'):
|
|
| 97 |
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
| 98 |
|
| 99 |
|
| 100 |
-
# Your repository name
|
| 101 |
-
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
| 102 |
|
| 103 |
|
| 104 |
-
api_token = os.getenv("HF_API_TOKEN") # Retrieve the API token from environment variable
|
| 105 |
-
|
| 106 |
-
if not api_token:
|
| 107 |
-
raise ValueError("API token not found. Please set the HF_API_TOKEN environment variable.")
|
| 108 |
-
|
| 109 |
-
# Create repository (if not already created)
|
| 110 |
-
api = HfApi()
|
| 111 |
-
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
| 112 |
-
|
| 113 |
|
| 114 |
# Create an instance of the custom loss function
|
| 115 |
training_args = TrainingArguments(
|
|
@@ -192,35 +181,12 @@ if (runModel=='1'):
|
|
| 192 |
evaluate_and_report_errors(model,train_dataloader, tokenizer)
|
| 193 |
|
| 194 |
# Save the model and tokenizer
|
| 195 |
-
|
| 196 |
-
|
| 197 |
|
| 198 |
-
# Save the model and tokenizer locally
|
| 199 |
-
local_model_path = "./data-timeframe_model"
|
| 200 |
-
local_tokenizer_path = "./data-timeframe_tokenizer"
|
| 201 |
-
|
| 202 |
-
# Ensure the directories exist
|
| 203 |
-
os.makedirs(local_model_path, exist_ok=True)
|
| 204 |
-
os.makedirs(local_tokenizer_path, exist_ok=True)
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
# Upload the model and tokenizer to the Hugging Face repository
|
| 210 |
-
upload_folder(
|
| 211 |
-
folder_path=local_model_path,
|
| 212 |
-
path_in_repo="data-timeframe_model",
|
| 213 |
-
repo_id=repo_name,
|
| 214 |
-
token=api_token,
|
| 215 |
-
commit_message="Update fine-tuned model"
|
| 216 |
-
)
|
| 217 |
-
upload_folder(
|
| 218 |
-
folder_path=local_tokenizer_path,
|
| 219 |
-
path_in_repo="data-timeframe_tokenizer",
|
| 220 |
-
repo_id=repo_name,
|
| 221 |
-
token=api_token,
|
| 222 |
-
commit_message="Update fine-tuned tokenizer"
|
| 223 |
-
)
|
| 224 |
|
| 225 |
|
| 226 |
else:
|
|
|
|
| 97 |
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# Create an instance of the custom loss function
|
| 104 |
training_args = TrainingArguments(
|
|
|
|
| 181 |
evaluate_and_report_errors(model,train_dataloader, tokenizer)
|
| 182 |
|
| 183 |
# Save the model and tokenizer
|
| 184 |
+
model.save_pretrained('./' + modelNameToUse + '_model')
|
| 185 |
+
tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
|
| 189 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
else:
|