Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -104,15 +104,15 @@ if (runModel=='1'):
|
|
| 104 |
# Create an instance of the custom loss function
|
| 105 |
training_args = TrainingArguments(
|
| 106 |
output_dir='./results_' + modelNameToUse,
|
| 107 |
-
num_train_epochs=
|
| 108 |
-
per_device_train_batch_size=
|
| 109 |
-
per_device_eval_batch_size=
|
| 110 |
warmup_steps=500,
|
| 111 |
weight_decay=0.02,
|
| 112 |
logging_dir='./logs_' + modelNameToUse,
|
| 113 |
logging_steps=10,
|
| 114 |
evaluation_strategy="epoch",
|
| 115 |
-
|
| 116 |
)
|
| 117 |
|
| 118 |
trainer = Trainer(
|
|
@@ -167,7 +167,13 @@ if (runModel=='1'):
|
|
| 167 |
else:
|
| 168 |
print("\nNo incorrect predictions found.")
|
| 169 |
|
| 170 |
-
train_dataloader = DataLoader(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
evaluate_and_report_errors(model,train_dataloader, tokenizer)
|
| 172 |
|
| 173 |
model_path = './' + modelNameToUse + '_model'
|
|
|
|
| 104 |
# Create an instance of the custom loss function
|
| 105 |
training_args = TrainingArguments(
|
| 106 |
output_dir='./results_' + modelNameToUse,
|
| 107 |
+
num_train_epochs=5,
|
| 108 |
+
per_device_train_batch_size=8,
|
| 109 |
+
per_device_eval_batch_size=8,
|
| 110 |
warmup_steps=500,
|
| 111 |
weight_decay=0.02,
|
| 112 |
logging_dir='./logs_' + modelNameToUse,
|
| 113 |
logging_steps=10,
|
| 114 |
evaluation_strategy="epoch",
|
| 115 |
+
load_best_model_at_end=True, # Load the best model based on evaluation
|
| 116 |
)
|
| 117 |
|
| 118 |
trainer = Trainer(
|
|
|
|
| 167 |
else:
|
| 168 |
print("\nNo incorrect predictions found.")
|
| 169 |
|
| 170 |
+
train_dataloader = DataLoader(
|
| 171 |
+
train_dataset,
|
| 172 |
+
batch_size=10,
|
| 173 |
+
shuffle=True,
|
| 174 |
+
num_workers=4 # Increase workers for faster data loading
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
evaluate_and_report_errors(model,train_dataloader, tokenizer)
|
| 178 |
|
| 179 |
model_path = './' + modelNameToUse + '_model'
|