Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1 +1,229 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from sklearn.model_selection import train_test_split
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
from torch.utils.data import DataLoader
|
| 7 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
#from sklearn.linear_model import LogisticRegression
|
| 11 |
+
#from sklearn.metrics import accuracy_score, confusion_matrix
|
| 12 |
+
#import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
#import numpy as np
|
| 15 |
+
import sys
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
#from torch.nn import CrossEntropyLoss
|
| 18 |
+
#from sklearn.decomposition import PCA
|
| 19 |
+
import matplotlib.pyplot as plt
|
| 20 |
+
|
| 21 |
+
if len(sys.argv) > 1:
|
| 22 |
+
# sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
|
| 23 |
+
runModel = sys.argv[1]
|
| 24 |
+
print(f"Passed value: {runModel}")
|
| 25 |
+
print (sys.argv[2])
|
| 26 |
+
|
| 27 |
+
else:
|
| 28 |
+
print("No argument was passed.")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 32 |
+
modelNameToUse = sys.argv[2]
|
| 33 |
+
|
| 34 |
+
if (runModel=='1'):
|
| 35 |
+
dataFileName = sys.argv[2] + '.csv'
|
| 36 |
+
print (dataFileName)
|
| 37 |
+
# Load the data from the CSV file
|
| 38 |
+
df = pd.read_csv(dataFileName)
|
| 39 |
+
# Access the text and labels
|
| 40 |
+
texts = df['text'].tolist()
|
| 41 |
+
labels = df['label'].tolist()
|
| 42 |
+
|
| 43 |
+
print('Train Model')
|
| 44 |
+
# Encode the labels
|
| 45 |
+
sorted_labels = sorted(df['label'].unique())
|
| 46 |
+
label_mapping = {label: i for i, label in enumerate(sorted_labels)}
|
| 47 |
+
df['label'] = df['label'].map(label_mapping)
|
| 48 |
+
print(df['label'])
|
| 49 |
+
# Train/test split
|
| 50 |
+
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenization
|
| 53 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
| 54 |
+
|
| 55 |
+
# Model and training setup
|
| 56 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', output_attentions=True, num_labels=len(label_mapping)).to('cpu')
|
| 57 |
+
|
| 58 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 59 |
+
|
| 60 |
+
train_encodings = tokenizer(list(train_df['text']), truncation=True, padding=True, max_length=64)
|
| 61 |
+
test_encodings = tokenizer(list(test_df['text']), truncation=True, padding=True, max_length=64)
|
| 62 |
+
|
| 63 |
+
# Dataset class
|
| 64 |
+
class IntentDataset(Dataset):
|
| 65 |
+
def __init__(self, encodings, labels):
|
| 66 |
+
|
| 67 |
+
self.encodings = encodings
|
| 68 |
+
self.labels = labels
|
| 69 |
+
|
| 70 |
+
def __getitem__(self, idx):
|
| 71 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
| 72 |
+
label = self.labels[idx]
|
| 73 |
+
item['labels'] = torch.tensor(self.labels[idx])
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
return item
|
| 77 |
+
|
| 78 |
+
def __len__(self):
|
| 79 |
+
return len(self.labels)
|
| 80 |
+
|
| 81 |
+
train_dataset = IntentDataset(train_encodings, list(train_df['label']))
|
| 82 |
+
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Create an instance of the custom loss function
|
| 87 |
+
training_args = TrainingArguments(
|
| 88 |
+
output_dir='./results_' + modelNameToUse,
|
| 89 |
+
num_train_epochs=25,
|
| 90 |
+
per_device_train_batch_size=2,
|
| 91 |
+
per_device_eval_batch_size=2,
|
| 92 |
+
warmup_steps=500,
|
| 93 |
+
weight_decay=0.02,
|
| 94 |
+
logging_dir='./logs_' + modelNameToUse,
|
| 95 |
+
logging_steps=10,
|
| 96 |
+
evaluation_strategy="epoch",
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
trainer = Trainer(
|
| 100 |
+
model=model,
|
| 101 |
+
args=training_args,
|
| 102 |
+
train_dataset=train_dataset,
|
| 103 |
+
eval_dataset=test_dataset
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Train the model
|
| 107 |
+
trainer.train()
|
| 108 |
+
|
| 109 |
+
# Evaluate the model
|
| 110 |
+
trainer.evaluate()
|
| 111 |
+
|
| 112 |
+
label_mapping = {
|
| 113 |
+
0: "lastmonth",
|
| 114 |
+
1: "nextweek",
|
| 115 |
+
2: "sevendays",
|
| 116 |
+
3: "today",
|
| 117 |
+
4: "tomorrow",
|
| 118 |
+
5: "yesterday"
|
| 119 |
+
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
def evaluate_and_report_errors(model, dataloader, tokenizer):
|
| 123 |
+
model.eval()
|
| 124 |
+
incorrect_predictions = []
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
#print(dataloader)
|
| 127 |
+
for batch in dataloader:
|
| 128 |
+
input_ids = batch['input_ids'].to(device)
|
| 129 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 130 |
+
labels = batch['labels'].to(device)
|
| 131 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 132 |
+
logits = outputs.logits
|
| 133 |
+
predictions = torch.argmax(logits, dim=1)
|
| 134 |
+
|
| 135 |
+
for i, prediction in enumerate(predictions):
|
| 136 |
+
if prediction != labels[i]:
|
| 137 |
+
incorrect_predictions.append({
|
| 138 |
+
"prompt": tokenizer.decode(input_ids[i], skip_special_tokens=True),
|
| 139 |
+
"predicted": prediction.item(),
|
| 140 |
+
"actual": labels[i].item()
|
| 141 |
+
})
|
| 142 |
+
|
| 143 |
+
# Print incorrect predictions
|
| 144 |
+
if incorrect_predictions:
|
| 145 |
+
print("\nIncorrect Predictions:")
|
| 146 |
+
for error in incorrect_predictions:
|
| 147 |
+
print(f"Sentence: {error['prompt']}")
|
| 148 |
+
#print(f"Predicted Label: {GetCategoryFromCategoryLong(error['predicted'])} | Actual Label: {GetCategoryFromCategoryLong(error['actual'])}\n")
|
| 149 |
+
print(f"Predicted Label: {label_mapping[error['predicted']]} | Actual Label: {label_mapping[error['actual']]}\n")
|
| 150 |
+
#print(f"Predicted Label: {error['predicted']} | Actual Label: {label_mapping[error['actual']]}\n")
|
| 151 |
+
else:
|
| 152 |
+
print("\nNo incorrect predictions found.")
|
| 153 |
+
|
| 154 |
+
train_dataloader = DataLoader(train_dataset, batch_size=10, shuffle=True)
|
| 155 |
+
evaluate_and_report_errors(model,train_dataloader, tokenizer)
|
| 156 |
+
|
| 157 |
+
# Save the model and tokenizer
|
| 158 |
+
model.save_pretrained('./' + modelNameToUse + '_model')
|
| 159 |
+
tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
|
| 160 |
+
else:
|
| 161 |
+
print('Load Pre-trained')
|
| 162 |
+
model_save_path = "./" + modelNameToUse + "_model"
|
| 163 |
+
tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
|
| 164 |
+
|
| 165 |
+
# RobertaTokenizer.from_pretrained(model_save_path)
|
| 166 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 167 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
| 168 |
+
|
| 169 |
+
#Define the label mappings (this must match the mapping used during training)
|
| 170 |
+
label_mapping = {
|
| 171 |
+
0: "lastmonth",
|
| 172 |
+
1: "nextweek",
|
| 173 |
+
2: "sevendays",
|
| 174 |
+
3: "today",
|
| 175 |
+
4: "tomorrow",
|
| 176 |
+
5: "yesterday"
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
#Function to classify user input
|
| 181 |
+
def classifyTimeFrame():
|
| 182 |
+
while True:
|
| 183 |
+
user_input = input("Enter a command (or type 'q' to quit): ")
|
| 184 |
+
if user_input.lower() == 'q':
|
| 185 |
+
print("Exiting...")
|
| 186 |
+
break
|
| 187 |
+
|
| 188 |
+
# Tokenize and predict
|
| 189 |
+
input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cpu')
|
| 190 |
+
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
attention_mask = input_encoding['attention_mask'].clone()
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# Modify the attention mask to emphasize certain key tokens
|
| 197 |
+
# for idx, token_id in enumerate(input_encoding['input_ids'][0]):
|
| 198 |
+
# word = tokenizer.decode([token_id])
|
| 199 |
+
# print(word)
|
| 200 |
+
# if word.strip() in ["now", "same", "continue", "again", "also"]: # Target key tokens
|
| 201 |
+
# attention_mask[0, idx] = 3 # Increase attention weight for these words
|
| 202 |
+
# else:
|
| 203 |
+
# attention_mask[0, idx] = 0
|
| 204 |
+
# print (attention_mask)
|
| 205 |
+
# input_encoding['attention_mask'] = attention_mask
|
| 206 |
+
# print (input_encoding)
|
| 207 |
+
output = model(**input_encoding, output_hidden_states=True)
|
| 208 |
+
|
| 209 |
+
probabilities = F.softmax(output.logits, dim=-1)
|
| 210 |
+
|
| 211 |
+
prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
|
| 212 |
+
|
| 213 |
+
# Map prediction back to label
|
| 214 |
+
print(prediction)
|
| 215 |
+
predicted_label = label_mapping[prediction[0]]
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
print(f"Predicted intent: {predicted_label}\n")
|
| 219 |
+
# Print the confidence for each label
|
| 220 |
+
print("\nLabel Confidence Scores:")
|
| 221 |
+
for i, label in label_mapping.items():
|
| 222 |
+
confidence = probabilities[0][i].item() # Get confidence score for each label
|
| 223 |
+
print(f"{label}: {confidence:.4f}")
|
| 224 |
+
print("\n")
|
| 225 |
+
|
| 226 |
+
#Run the function
|
| 227 |
+
classifyTimeFrame()
|
| 228 |
+
|
| 229 |
+
|