Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
|
| 4 |
+
# Load the dataset - Here we use the wiki_dpr dataset for retrieval
|
| 5 |
+
dataset = load_dataset('wiki_dpr', 'psgs_w100.nq.exact')
|
| 6 |
+
|
| 7 |
+
# Initialize the RAG tokenizer (use the T5 tokenizer for RAG)
|
| 8 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
| 9 |
+
|
| 10 |
+
# Initialize the RAG Retriever with the correct index name for wiki_dpr dataset
|
| 11 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="compressed", use_dummy_dataset=True)
|
| 12 |
+
|
| 13 |
+
# Initialize the RAG Sequence Model (T5-based)
|
| 14 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
| 15 |
+
|
| 16 |
+
# Tokenize a sample from the dataset (using wiki_dpr for retrieval)
|
| 17 |
+
sample = dataset["train"][0] # or dataset["validation"][0]
|
| 18 |
+
input_text = sample["query"]
|
| 19 |
+
context_text = sample["passage"]
|
| 20 |
+
|
| 21 |
+
# Tokenize the input question
|
| 22 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 23 |
+
|
| 24 |
+
# Generate the answer using the RAG model
|
| 25 |
+
outputs = model.generate(input_ids=inputs['input_ids'],
|
| 26 |
+
decoder_start_token_id=model.config.pad_token_id,
|
| 27 |
+
num_beams=3,
|
| 28 |
+
num_return_sequences=1,
|
| 29 |
+
do_sample=False)
|
| 30 |
+
|
| 31 |
+
# Decode the generated output
|
| 32 |
+
generated_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 33 |
+
|
| 34 |
+
print(f"Question: {input_text}")
|
| 35 |
+
print(f"Answer: {generated_answer}")
|