Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -45,6 +45,37 @@ arg5 = config.get('arg5', '1')
|
|
| 45 |
arg6 = config.get('arg6', 'saved_fleet_model')
|
| 46 |
arg7 = config.get('arg7', 'Model')
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
if num_args == 7:
|
| 49 |
# cmd args
|
| 50 |
# sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
|
|
@@ -81,11 +112,9 @@ if (should_train_model=='1'): #train model
|
|
| 81 |
file_path_train = train_file + ".csv"
|
| 82 |
file_path_test = test_file + ".csv"
|
| 83 |
|
| 84 |
-
|
| 85 |
-
file_train_df = fetch_and_update_training_data()
|
| 86 |
-
|
| 87 |
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
| 88 |
#file_train_df = pd.read_csv(file_path_train)
|
|
|
|
| 89 |
file_train_df = fetch_and_update_training_data()
|
| 90 |
file_test_df = pd.read_csv(file_path_test)
|
| 91 |
|
|
@@ -338,38 +367,7 @@ label_mapping_reverse = {value: key for key, value in label_mapping.items()}
|
|
| 338 |
|
| 339 |
|
| 340 |
|
| 341 |
-
# create function for fetch data
|
| 342 |
-
def fetch_and_update_training_data():
|
| 343 |
-
model_name = f"{arg7}"
|
| 344 |
-
export_type = "sentence"
|
| 345 |
-
|
| 346 |
-
print(arg2)
|
| 347 |
-
print(arg7)
|
| 348 |
-
|
| 349 |
-
request_url = f"http://20.247.235.135/AiBot/BE/api/PromptEnhancer/ExportPEList?modelName={model_name}&exportType={export_type}"
|
| 350 |
-
|
| 351 |
-
response = requests.get(request_url)
|
| 352 |
-
|
| 353 |
-
if response.status_code == 200:
|
| 354 |
-
try:
|
| 355 |
-
# Save response as CSV
|
| 356 |
-
with open(arg2 + ".csv", "w", encoding="utf-8") as file:
|
| 357 |
-
file.write(response.text)
|
| 358 |
-
|
| 359 |
-
print("Training file updated successfully.")
|
| 360 |
-
|
| 361 |
-
# Read the updated CSV into a DataFrame
|
| 362 |
-
return pd.read_csv(arg2 + ".csv")
|
| 363 |
|
| 364 |
-
except Exception as e:
|
| 365 |
-
print(f"Error processing the response: {e}")
|
| 366 |
-
return None
|
| 367 |
-
else:
|
| 368 |
-
print(f"Error fetching data: {response.status_code}")
|
| 369 |
-
return None
|
| 370 |
-
|
| 371 |
-
# run the function
|
| 372 |
-
fetch_and_update_training_data()
|
| 373 |
|
| 374 |
#Function to classify user input
|
| 375 |
def classify_user_input():
|
|
|
|
| 45 |
arg6 = config.get('arg6', 'saved_fleet_model')
|
| 46 |
arg7 = config.get('arg7', 'Model')
|
| 47 |
|
| 48 |
+
# create function for fetch data
|
| 49 |
+
def fetch_and_update_training_data():
|
| 50 |
+
model_name = f"{arg7}"
|
| 51 |
+
export_type = "sentence"
|
| 52 |
+
|
| 53 |
+
print(arg2)
|
| 54 |
+
print(arg7)
|
| 55 |
+
|
| 56 |
+
request_url = f"http://20.247.235.135/AiBot/BE/api/PromptEnhancer/ExportPEList?modelName={model_name}&exportType={export_type}"
|
| 57 |
+
|
| 58 |
+
response = requests.get(request_url)
|
| 59 |
+
|
| 60 |
+
if response.status_code == 200:
|
| 61 |
+
try:
|
| 62 |
+
# Save response as CSV
|
| 63 |
+
with open(arg2 + ".csv", "w", encoding="utf-8") as file:
|
| 64 |
+
file.write(response.text)
|
| 65 |
+
|
| 66 |
+
print("Training file updated successfully.")
|
| 67 |
+
|
| 68 |
+
# Read the updated CSV into a DataFrame
|
| 69 |
+
return pd.read_csv(arg2 + ".csv")
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error processing the response: {e}")
|
| 73 |
+
return None
|
| 74 |
+
else:
|
| 75 |
+
print(f"Error fetching data: {response.status_code}")
|
| 76 |
+
return None
|
| 77 |
+
|
| 78 |
+
|
| 79 |
if num_args == 7:
|
| 80 |
# cmd args
|
| 81 |
# sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
|
|
|
|
| 112 |
file_path_train = train_file + ".csv"
|
| 113 |
file_path_test = test_file + ".csv"
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
| 116 |
#file_train_df = pd.read_csv(file_path_train)
|
| 117 |
+
|
| 118 |
file_train_df = fetch_and_update_training_data()
|
| 119 |
file_test_df = pd.read_csv(file_path_test)
|
| 120 |
|
|
|
|
| 367 |
|
| 368 |
|
| 369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
#Function to classify user input
|
| 373 |
def classify_user_input():
|