Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#python hf-fine-tune-fleet-8.py 1 train_fleet test_fleet 1 1 saved_fleet_model
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 6 |
+
import torch
|
| 7 |
+
from torch.utils.data import Dataset
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from sklearn.model_selection import train_test_split
|
| 12 |
+
from sklearn.linear_model import LogisticRegression
|
| 13 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import seaborn as sns
|
| 16 |
+
import numpy as np
|
| 17 |
+
import sys
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch.nn import CrossEntropyLoss
|
| 20 |
+
from sklearn.decomposition import PCA
|
| 21 |
+
import matplotlib.pyplot as plt
|
| 22 |
+
import re
|
| 23 |
+
from datasets import load_dataset, DatasetDict
|
| 24 |
+
import time
|
| 25 |
+
import pprint
|
| 26 |
+
import json
|
| 27 |
+
from huggingface_hub import HfApi, login, upload_folder, create_repo
|
| 28 |
+
import os
|
| 29 |
+
|
| 30 |
+
# Load configuration file
|
| 31 |
+
with open('config.json', 'r') as config_file:
|
| 32 |
+
config = json.load(config_file)
|
| 33 |
+
|
| 34 |
+
num_args = len(config)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
arg2 = config.get('arg2', '1')
|
| 38 |
+
arg3 = config.get('arg3', 'train_fleet')
|
| 39 |
+
arg4 = config.get('arg4', 'train_fleet')
|
| 40 |
+
arg5 = config.get('arg5', '1')
|
| 41 |
+
arg6 = config.get('arg6', '1')
|
| 42 |
+
arg7 = config.get('arg7', 'saved_fleet_model')
|
| 43 |
+
|
| 44 |
+
if num_args == 7:
|
| 45 |
+
# cmd args
|
| 46 |
+
# sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
|
| 47 |
+
should_train_model = arg2 # should train model?
|
| 48 |
+
train_file = arg3 # training file name
|
| 49 |
+
test_file = arg4 # eval file name
|
| 50 |
+
batch_size_for_trainer = int(arg5) # batch sizes to send to trainer
|
| 51 |
+
should_produce_eval_matrix = int(arg6) # should produce matrix?
|
| 52 |
+
path_to_save_trained_model_to = arg7
|
| 53 |
+
|
| 54 |
+
print(f"should train model? : {arg2}")
|
| 55 |
+
print (f"file to train on : {arg3}")
|
| 56 |
+
print (f"file to evaluate on : {arg4}")
|
| 57 |
+
print (f"batch size : {arg5}")
|
| 58 |
+
print (f"should produce eval matrix : {arg6}")
|
| 59 |
+
print (f"path to save trained model : {arg7}")
|
| 60 |
+
|
| 61 |
+
print(f"should train model? : {should_train_model}")
|
| 62 |
+
print (f"file to train on : {train_file}")
|
| 63 |
+
print (f"file to evaluate on : {test_file}")
|
| 64 |
+
print (f"batch size : {batch_size_for_trainer}")
|
| 65 |
+
print (f"should produce eval matrix : {should_produce_eval_matrix}")
|
| 66 |
+
print (f"path to save trained model : {path_to_save_trained_model_to}")
|
| 67 |
+
|
| 68 |
+
else:
|
| 69 |
+
print(f"Only {num_args-1} arguments after filename were passed out of 6")
|
| 70 |
+
sys.exit()
|
| 71 |
+
|
| 72 |
+
import os
|
| 73 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #only use 1 of my GPS (in case very weak ones are installed which would slow the training down)
|
| 74 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
if (should_train_model=='1'): #train model
|
| 78 |
+
|
| 79 |
+
#settings
|
| 80 |
+
model_save_path = path_to_save_trained_model_to
|
| 81 |
+
bias_non_fleet = 1.0
|
| 82 |
+
epochs_to_run = 15
|
| 83 |
+
|
| 84 |
+
file_path_train = train_file + ".csv"
|
| 85 |
+
file_path_test = test_file + ".csv"
|
| 86 |
+
|
| 87 |
+
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
| 88 |
+
file_train_df = pd.read_csv(file_path_train)
|
| 89 |
+
file_test_df = pd.read_csv(file_path_test)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
#combine dataframes to get all possible labels/classifications for both training and evaluating - to get all possible labels (intents)
|
| 93 |
+
df = pd.concat([file_train_df, file_test_df], ignore_index=True)
|
| 94 |
+
sorted_labels = sorted(df['label'].unique())
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
#create labels map from unique sorted labels
|
| 98 |
+
label_mapping = {label: i for i, label in enumerate(sorted_labels)}
|
| 99 |
+
print("label mappings")
|
| 100 |
+
print(label_mapping)
|
| 101 |
+
|
| 102 |
+
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
| 103 |
+
|
| 104 |
+
# Tokenization - get Tokenizer for roberta-base (must match model - also roberta-base)
|
| 105 |
+
# tokenizer = BertTokenizer.from_pretrained('./mitra_ai_fleet_bert_tokenizer')
|
| 106 |
+
tokenizer = BertTokenizer.from_pretrained(repo_name, subfolder="bert_embeddings_finetune")
|
| 107 |
+
# I made sure to add all the ones in the training and eval data to this list
|
| 108 |
+
# since we are training using data that only contains the left tag - we don't need right tags added to this list
|
| 109 |
+
new_tokens = ['<EMPLOYEE_FIRST_NAME>', '<EMPLOYEE_LAST_NAME>','<POINT_ADDRESS>', '<TRUCK_NAME>', '<POINT_CLASS_NAME>', '<POINT_NAME>', '<TRUCK_CLASS_NAME>', '<TRUCK_STATUS_NAME>]']
|
| 110 |
+
tokenizer.add_tokens(new_tokens)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Model
|
| 114 |
+
model = BertForSequenceClassification.from_pretrained(repo_name, subfolder="bert_embeddings_finetune", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cuda')
|
| 115 |
+
# model = BertForSequenceClassification.from_pretrained('./mitra_ai_fleet_bert', output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cuda')
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# Reset tokenizer size to include the new size after adding the tags to the tokenizer's tokens
|
| 119 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 120 |
+
|
| 121 |
+
#important_tokens = ["Acura-New", "TR-9012", "TR-NEW-02"]
|
| 122 |
+
|
| 123 |
+
from datasets import Dataset, DatasetDict
|
| 124 |
+
from sklearn.model_selection import train_test_split
|
| 125 |
+
|
| 126 |
+
# Step 2: Convert string labels to integers
|
| 127 |
+
# Create a mapping from unique labels (strings) to integers
|
| 128 |
+
label_to_id = {label: idx for idx, label in enumerate(sorted(df["label"].unique()))}
|
| 129 |
+
print(label_to_id)
|
| 130 |
+
|
| 131 |
+
# Dataframes contain prompts and label names
|
| 132 |
+
print('before converting labels to labelIds')
|
| 133 |
+
pprint.pp(file_train_df)
|
| 134 |
+
pprint.pp(file_test_df)
|
| 135 |
+
|
| 136 |
+
# Apply the mapping to the labels to id (will swap out the label names with label id to the dataframes)
|
| 137 |
+
file_train_df["label"] = file_train_df["label"].map(label_to_id)
|
| 138 |
+
file_test_df["label"] = file_test_df["label"].map(label_to_id)
|
| 139 |
+
|
| 140 |
+
print('after swapping out label names with Ids')
|
| 141 |
+
pprint.pp(file_train_df)
|
| 142 |
+
pprint.pp(file_test_df)
|
| 143 |
+
|
| 144 |
+
# Step 3: Convert both dataframes to dictionaries
|
| 145 |
+
emotions_dict_train = {"text": file_train_df["text"].tolist(), "label": file_train_df["label"].tolist()}
|
| 146 |
+
emotions_dict_test = {"text": file_test_df["text"].tolist(), "label": file_test_df["label"].tolist()}
|
| 147 |
+
|
| 148 |
+
print('dictionaries')
|
| 149 |
+
pprint.pp(emotions_dict_train)
|
| 150 |
+
pprint.pp(emotions_dict_test)
|
| 151 |
+
|
| 152 |
+
# convert dictionaries to datasets
|
| 153 |
+
emotions_dataset_train = Dataset.from_dict(emotions_dict_train)
|
| 154 |
+
emotions_dataset_test = Dataset.from_dict(emotions_dict_test)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Step 4: Split dataset into train and validation
|
| 159 |
+
# Create top level dictionary with both datasets (will contain two keys: one for "train" whose value is the training dataset
|
| 160 |
+
# and one for "validation" with test dataset)
|
| 161 |
+
emotions_encoded = DatasetDict({
|
| 162 |
+
'train': emotions_dataset_train,
|
| 163 |
+
'validation': emotions_dataset_test
|
| 164 |
+
})
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
# Define the tokenize function
|
| 168 |
+
def tokenize(batch):
|
| 169 |
+
return tokenizer(batch["text"], padding=True, truncation=True)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# Apply tokenization by mapping the entire dataset (both training and validation) to tokenizer function
|
| 173 |
+
# this will add the "input_id" and "attention_mask" columns
|
| 174 |
+
emotions_encoded = emotions_encoded.map(tokenize, batched=True)
|
| 175 |
+
emotions_encoded.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
| 176 |
+
|
| 177 |
+
# Set the model to evaluation mode (this line does not run any training or eval)
|
| 178 |
+
model.eval()
|
| 179 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 180 |
+
model.to(device)
|
| 181 |
+
|
| 182 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 183 |
+
|
| 184 |
+
# Define additional compute_metrics (used as part of error-analysis - produces "accuracy" metric which can be used in another program
|
| 185 |
+
# that shows any training prompts with large losses)
|
| 186 |
+
def compute_metrics(pred):
|
| 187 |
+
logits = pred.predictions[0] if isinstance(pred.predictions, tuple) else pred.predictions
|
| 188 |
+
preds = logits.argmax(-1)
|
| 189 |
+
labels = pred.label_ids
|
| 190 |
+
accuracy = (preds == labels).astype(float).mean()
|
| 191 |
+
return {"accuracy": accuracy}
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
training_args = TrainingArguments(
|
| 195 |
+
output_dir='./results',
|
| 196 |
+
num_train_epochs=epochs_to_run,
|
| 197 |
+
per_device_train_batch_size=batch_size_for_trainer,
|
| 198 |
+
per_device_eval_batch_size=batch_size_for_trainer,
|
| 199 |
+
warmup_steps=500,
|
| 200 |
+
learning_rate=2e-5,
|
| 201 |
+
weight_decay=0.02,
|
| 202 |
+
logging_dir='./logs',
|
| 203 |
+
logging_steps=10,
|
| 204 |
+
evaluation_strategy="epoch",
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# notice the bias_non_float in next line (it is given a value at top of code)
|
| 208 |
+
# class_weights = torch.tensor([1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,bias_non_fleet,1.0,1.0]) # Replace with your actual class weights
|
| 209 |
+
# class_weights = class_weights.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 210 |
+
|
| 211 |
+
# This is needed b/c loss_fn is swapped out in order to use weighted loss
|
| 212 |
+
# Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
|
| 213 |
+
class CustomTrainer(Trainer):
|
| 214 |
+
def compute_loss(self, model, inputs, return_outputs=False):
|
| 215 |
+
labels = inputs.get("labels")
|
| 216 |
+
outputs = model(**inputs)
|
| 217 |
+
logits = outputs.get("logits")
|
| 218 |
+
|
| 219 |
+
# Use cross-entropy loss with class weights
|
| 220 |
+
# loss_fn = torch.nn.CrossEntropyLoss(weight=class_weights)
|
| 221 |
+
loss_fn = torch.nn.CrossEntropyLoss()
|
| 222 |
+
loss = loss_fn(logits, labels)
|
| 223 |
+
|
| 224 |
+
return (loss, outputs) if return_outputs else loss
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# trainer = CustomTrainer(
|
| 228 |
+
# model=model,
|
| 229 |
+
# compute_metrics=compute_metrics,
|
| 230 |
+
# args=training_args,
|
| 231 |
+
# train_dataset=emotions_encoded["train"],
|
| 232 |
+
# eval_dataset=emotions_encoded["validation"],
|
| 233 |
+
# tokenizer=tokenizer )
|
| 234 |
+
|
| 235 |
+
trainer = Trainer(
|
| 236 |
+
model=model,
|
| 237 |
+
args=training_args,
|
| 238 |
+
train_dataset=emotions_encoded["train"],
|
| 239 |
+
eval_dataset=emotions_encoded["validation"],
|
| 240 |
+
tokenizer=tokenizer
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# Train the model and set timer to measure the training time
|
| 244 |
+
start_time = time.time()
|
| 245 |
+
trainer.train()
|
| 246 |
+
end_time = time.time()
|
| 247 |
+
execution_time = end_time - start_time
|
| 248 |
+
|
| 249 |
+
print(f"Execution Time: {execution_time:.2f} seconds")
|
| 250 |
+
|
| 251 |
+
# send validation prompts through the model - will be used in error-analysis matrix below
|
| 252 |
+
preds_output = trainer.predict(emotions_encoded["validation"])
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
#################This section creates a error analysis matrix
|
| 256 |
+
# Extract the logits from the predictions output
|
| 257 |
+
logits = preds_output.predictions[0] if isinstance(preds_output.predictions, tuple) else preds_output.predictions
|
| 258 |
+
|
| 259 |
+
# Get the predicted class by applying argmax on the logits
|
| 260 |
+
y_preds = np.argmax(logits, axis=1) #prediction
|
| 261 |
+
y_valid = np.array(emotions_encoded["validation"]["label"]) #labels
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
|
| 265 |
+
import matplotlib.pyplot as plt
|
| 266 |
+
import numpy as np
|
| 267 |
+
|
| 268 |
+
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 269 |
+
#num_labels2 = len(label_mapping)
|
| 270 |
+
|
| 271 |
+
print("Ypreds and valids shape")
|
| 272 |
+
print(y_preds.shape, y_valid.shape)
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# Define the function to plot the confusion matrix
|
| 276 |
+
def plot_confusion_matrix_with_text_labels(y_preds, y_true, labels):
|
| 277 |
+
|
| 278 |
+
# Compute confusion matrix
|
| 279 |
+
cm = confusion_matrix(y_true, y_preds,normalize="true")
|
| 280 |
+
|
| 281 |
+
# Plot confusion matrix
|
| 282 |
+
fig, ax = plt.subplots(figsize=(len(labels), len(labels)))
|
| 283 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
|
| 284 |
+
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
|
| 285 |
+
|
| 286 |
+
# Rotate the x-axis labels to prevent overlap
|
| 287 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
| 288 |
+
|
| 289 |
+
# Ensure the plot is displayed
|
| 290 |
+
plt.title("Normalized Confusion Matrix with Text Labels")
|
| 291 |
+
plt.tight_layout()
|
| 292 |
+
plt.savefig("confusion_matrix.png")
|
| 293 |
+
plt.show()
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# Get unique labels for validation data only - this will be shown in the matrix
|
| 298 |
+
unique_labels = sorted(set(y_valid) | set(y_preds))
|
| 299 |
+
id_to_label = {v: k for k, v in label_to_id.items()}
|
| 300 |
+
labels = [id_to_label[label] for label in unique_labels]
|
| 301 |
+
|
| 302 |
+
print ("unique_labels")
|
| 303 |
+
print(labels)
|
| 304 |
+
|
| 305 |
+
# Call the function with the correct labels
|
| 306 |
+
if(should_produce_eval_matrix == 1):
|
| 307 |
+
plot_confusion_matrix_with_text_labels(y_preds, y_valid, labels)
|
| 308 |
+
|
| 309 |
+
#the label mapping will be saved in the model - and retrieved by any other program using the model -
|
| 310 |
+
# for instance the pathway through this code used for inference only will retrieve this value
|
| 311 |
+
# (or like the Python program that measures poor accuracies)
|
| 312 |
+
model.config.label_mapping = label_mapping
|
| 313 |
+
|
| 314 |
+
# Save the model and tokenizer
|
| 315 |
+
model.save_pretrained(f"./{model_save_path}")
|
| 316 |
+
tokenizer.save_pretrained('./saved_fleet_tokenizer')
|
| 317 |
+
|
| 318 |
+
#for push repository
|
| 319 |
+
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
| 320 |
+
|
| 321 |
+
# Your repository name
|
| 322 |
+
api_token = os.getenv("hf_token") # Retrieve the API token from environment variable
|
| 323 |
+
|
| 324 |
+
if not api_token:
|
| 325 |
+
raise ValueError("API token not found. Please set the HF_API_TOKEN environment variable.")
|
| 326 |
+
|
| 327 |
+
# Create repository (if not already created)
|
| 328 |
+
api = HfApi()
|
| 329 |
+
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
| 330 |
+
|
| 331 |
+
# Upload the model and tokenizer to the Hugging Face repository
|
| 332 |
+
|
| 333 |
+
upload_folder(
|
| 334 |
+
folder_path=f"{model_save_path}",
|
| 335 |
+
path_in_repo=f"{model_save_path}",
|
| 336 |
+
repo_id=repo_name,
|
| 337 |
+
token=api_token,
|
| 338 |
+
commit_message="Push fleet model",
|
| 339 |
+
#overwrite=True # Force overwrite existing files
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
upload_folder(
|
| 343 |
+
folder_path="saved_fleet_tokenizer",
|
| 344 |
+
path_in_repo="saved_fleet_tokenizer",
|
| 345 |
+
repo_id=repo_name,
|
| 346 |
+
token=api_token,
|
| 347 |
+
commit_message="Push fleet tokenizer",
|
| 348 |
+
#overwrite=True # Force overwrite existing files
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
else:
|
| 352 |
+
print('Load Pre-trained')
|
| 353 |
+
model_save_path = "./saved_fleet_model"
|
| 354 |
+
tokenizer_save_path = "./saved_fleet_tokenizer"
|
| 355 |
+
# RobertaTokenizer.from_pretrained(model_save_path)
|
| 356 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cuda')
|
| 357 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
| 358 |
+
|
| 359 |
+
#Define the label mappings (this must match the mapping used during training)
|
| 360 |
+
label_mapping = model.config.label_mapping
|
| 361 |
+
label_mapping_reverse = {value: key for key, value in label_mapping.items()}
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
#Function to classify user input
|
| 365 |
+
def classify_user_input():
|
| 366 |
+
while True:
|
| 367 |
+
user_input = input("Enter a command (or type 'q' to quit): ")
|
| 368 |
+
if user_input.lower() == 'q':
|
| 369 |
+
print("Exiting...")
|
| 370 |
+
break
|
| 371 |
+
|
| 372 |
+
# Tokenize and predict
|
| 373 |
+
input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cuda')
|
| 374 |
+
|
| 375 |
+
with torch.no_grad():
|
| 376 |
+
#attention_mask = input_encoding['attention_mask'].clone()
|
| 377 |
+
|
| 378 |
+
# Modify the attention mask to emphasize certain key tokens
|
| 379 |
+
for idx, token_id in enumerate(input_encoding['input_ids'][0]):
|
| 380 |
+
word = tokenizer.decode([token_id])
|
| 381 |
+
print(word)
|
| 382 |
+
#if word.strip() in ["point", "summarize", "oil", "maintenance"]: # Target key tokens
|
| 383 |
+
#attention_mask[0, idx] = 2 # Increase attention weight for these words
|
| 384 |
+
# else:
|
| 385 |
+
# attention_mask[0, idx] = 0
|
| 386 |
+
#print (attention_mask)
|
| 387 |
+
#input_encoding['attention_mask'] = attention_mask
|
| 388 |
+
output = model(**input_encoding, output_hidden_states=True)
|
| 389 |
+
# print('start-logits')
|
| 390 |
+
# print(output.logits)
|
| 391 |
+
# print('end-logits')
|
| 392 |
+
#print(output)
|
| 393 |
+
attention = output.attentions # Get attention scores
|
| 394 |
+
#print('atten')
|
| 395 |
+
#print(attention)
|
| 396 |
+
# Apply softmax to get the probabilities (confidence scores)
|
| 397 |
+
probabilities = F.softmax(output.logits, dim=-1)
|
| 398 |
+
|
| 399 |
+
# tokens = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0].cpu().numpy())
|
| 400 |
+
# # Display the attention visualization
|
| 401 |
+
# input_text = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0])
|
| 402 |
+
|
| 403 |
+
prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
|
| 404 |
+
|
| 405 |
+
# Map prediction back to label
|
| 406 |
+
print(prediction)
|
| 407 |
+
predicted_label = label_mapping_reverse[prediction[0]]
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
print(f"Predicted intent: {predicted_label}\n")
|
| 411 |
+
# Print the confidence for each label
|
| 412 |
+
print("\nLabel Confidence Scores:")
|
| 413 |
+
for i, label in label_mapping_reverse.items():
|
| 414 |
+
confidence = probabilities[0][i].item() # Get confidence score for each label
|
| 415 |
+
print(f"{label}: {confidence:.4f}")
|
| 416 |
+
print("\n")
|
| 417 |
+
|
| 418 |
+
#Run the function
|
| 419 |
+
classify_user_input()
|
| 420 |
+
|
| 421 |
+
|