File size: 14,918 Bytes
e4e4574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
#!/usr/bin/env python3
"""
ادغام مدلهای HuggingFace برای تحلیل هوش مصنوعی
HuggingFace Models Integration for AI Analysis
"""
import asyncio
from typing import List, Dict, Optional, Any
from datetime import datetime
import logging
try:
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
logging.warning("⚠️ transformers not installed. AI features will be limited.")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HuggingFaceAnalyzer:
"""
تحلیلگر هوش مصنوعی با استفاده از مدلهای HuggingFace
AI Analyzer using HuggingFace models
"""
def __init__(self):
self.models_loaded = False
self.sentiment_analyzer = None
self.zero_shot_classifier = None
if TRANSFORMERS_AVAILABLE:
self._load_models()
def _load_models(self):
"""بارگذاری مدلهای HuggingFace"""
try:
logger.info("🤗 Loading HuggingFace models...")
# Sentiment Analysis Model - FinBERT (specialized for financial text)
try:
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="ProsusAI/finbert",
tokenizer="ProsusAI/finbert"
)
logger.info("✅ Loaded FinBERT for sentiment analysis")
except Exception as e:
logger.warning(f"⚠️ Could not load FinBERT: {e}")
# Fallback to general sentiment model
try:
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english"
)
logger.info("✅ Loaded DistilBERT for sentiment analysis (fallback)")
except Exception as e2:
logger.error(f"❌ Could not load sentiment model: {e2}")
# Zero-shot Classification (for categorizing news/tweets)
try:
self.zero_shot_classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli"
)
logger.info("✅ Loaded BART for zero-shot classification")
except Exception as e:
logger.warning(f"⚠️ Could not load zero-shot classifier: {e}")
self.models_loaded = True
logger.info("🎉 HuggingFace models loaded successfully!")
except Exception as e:
logger.error(f"❌ Error loading models: {e}")
self.models_loaded = False
async def analyze_news_sentiment(self, news_text: str) -> Dict[str, Any]:
"""
تحلیل احساسات یک خبر
Analyze sentiment of a news article
"""
if not self.models_loaded or not self.sentiment_analyzer:
return {
"sentiment": "neutral",
"confidence": 0.0,
"error": "Model not available"
}
try:
# Truncate text to avoid token limit
max_length = 512
text = news_text[:max_length]
# Run sentiment analysis
result = self.sentiment_analyzer(text)[0]
# Map FinBERT labels to standard format
label_map = {
"positive": "bullish",
"negative": "bearish",
"neutral": "neutral"
}
sentiment = label_map.get(result['label'].lower(), result['label'].lower())
return {
"sentiment": sentiment,
"confidence": round(result['score'], 4),
"raw_label": result['label'],
"text_analyzed": text[:100] + "...",
"model": "finbert",
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"❌ Sentiment analysis error: {e}")
return {
"sentiment": "neutral",
"confidence": 0.0,
"error": str(e)
}
async def analyze_news_batch(self, news_list: List[Dict]) -> List[Dict]:
"""
تحلیل دستهای احساسات اخبار
Batch sentiment analysis for news
"""
results = []
for news in news_list:
text = f"{news.get('title', '')} {news.get('description', '')}"
sentiment_result = await self.analyze_news_sentiment(text)
results.append({
**news,
"ai_sentiment": sentiment_result['sentiment'],
"ai_confidence": sentiment_result['confidence'],
"ai_analysis": sentiment_result
})
# Small delay to avoid overloading
await asyncio.sleep(0.1)
return results
async def categorize_news(self, news_text: str) -> Dict[str, Any]:
"""
دستهبندی اخبار با zero-shot classification
Categorize news using zero-shot classification
"""
if not self.models_loaded or not self.zero_shot_classifier:
return {
"category": "general",
"confidence": 0.0,
"error": "Model not available"
}
try:
# Define categories
categories = [
"price_movement",
"regulation",
"technology",
"adoption",
"security",
"defi",
"nft",
"exchange",
"mining",
"general"
]
# Truncate text
text = news_text[:512]
# Run classification
result = self.zero_shot_classifier(text, categories)
return {
"category": result['labels'][0],
"confidence": round(result['scores'][0], 4),
"all_categories": [
{"label": label, "score": round(score, 4)}
for label, score in zip(result['labels'][:3], result['scores'][:3])
],
"model": "bart-mnli",
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"❌ Categorization error: {e}")
return {
"category": "general",
"confidence": 0.0,
"error": str(e)
}
async def calculate_aggregated_sentiment(
self,
news_list: List[Dict],
symbol: Optional[str] = None
) -> Dict[str, Any]:
"""
محاسبه احساسات جمعی از چندین خبر
Calculate aggregated sentiment from multiple news items
"""
if not news_list:
return {
"overall_sentiment": "neutral",
"sentiment_score": 0.0,
"confidence": 0.0,
"news_count": 0
}
# Filter by symbol if provided
if symbol:
news_list = [
n for n in news_list
if symbol.upper() in [c.upper() for c in n.get('coins', [])]
]
if not news_list:
return {
"overall_sentiment": "neutral",
"sentiment_score": 0.0,
"confidence": 0.0,
"news_count": 0,
"note": f"No news found for {symbol}"
}
# Analyze each news item
analyzed_news = await self.analyze_news_batch(news_list[:20]) # Limit to 20
# Calculate weighted sentiment
bullish_count = 0
bearish_count = 0
neutral_count = 0
total_confidence = 0.0
for news in analyzed_news:
sentiment = news.get('ai_sentiment', 'neutral')
confidence = news.get('ai_confidence', 0.0)
if sentiment == 'bullish':
bullish_count += confidence
elif sentiment == 'bearish':
bearish_count += confidence
else:
neutral_count += confidence
total_confidence += confidence
# Calculate overall sentiment score (-100 to +100)
if total_confidence > 0:
sentiment_score = ((bullish_count - bearish_count) / total_confidence) * 100
else:
sentiment_score = 0.0
# Determine overall classification
if sentiment_score > 30:
overall = "bullish"
elif sentiment_score < -30:
overall = "bearish"
else:
overall = "neutral"
return {
"overall_sentiment": overall,
"sentiment_score": round(sentiment_score, 2),
"confidence": round(total_confidence / len(analyzed_news), 2) if analyzed_news else 0.0,
"news_count": len(analyzed_news),
"bullish_weight": round(bullish_count, 2),
"bearish_weight": round(bearish_count, 2),
"neutral_weight": round(neutral_count, 2),
"symbol": symbol,
"timestamp": datetime.now().isoformat()
}
async def predict_price_direction(
self,
symbol: str,
recent_news: List[Dict],
current_price: float,
historical_prices: List[float]
) -> Dict[str, Any]:
"""
پیشبینی جهت قیمت بر اساس اخبار و روند قیمت
Predict price direction based on news sentiment and price trend
"""
# Get news sentiment
news_sentiment = await self.calculate_aggregated_sentiment(recent_news, symbol)
# Calculate price trend
if len(historical_prices) >= 2:
price_change = ((current_price - historical_prices[0]) / historical_prices[0]) * 100
else:
price_change = 0.0
# Combine signals
# News sentiment weight: 60%
# Price momentum weight: 40%
news_score = news_sentiment['sentiment_score'] * 0.6
momentum_score = min(50, max(-50, price_change * 10)) * 0.4
combined_score = news_score + momentum_score
# Determine prediction
if combined_score > 20:
prediction = "bullish"
direction = "up"
elif combined_score < -20:
prediction = "bearish"
direction = "down"
else:
prediction = "neutral"
direction = "sideways"
# Calculate confidence
confidence = min(1.0, abs(combined_score) / 100)
return {
"symbol": symbol,
"prediction": prediction,
"direction": direction,
"confidence": round(confidence, 2),
"combined_score": round(combined_score, 2),
"news_sentiment_score": round(news_score / 0.6, 2),
"price_momentum_score": round(momentum_score / 0.4, 2),
"current_price": current_price,
"price_change_pct": round(price_change, 2),
"news_analyzed": news_sentiment['news_count'],
"timestamp": datetime.now().isoformat(),
"model": "combined_analysis"
}
class SimpleHuggingFaceAnalyzer:
"""
نسخه ساده برای زمانی که transformers نصب نیست
Simplified version when transformers is not available
Uses simple keyword-based sentiment
"""
async def analyze_news_sentiment(self, news_text: str) -> Dict[str, Any]:
"""Simple keyword-based sentiment"""
text_lower = news_text.lower()
# Bullish keywords
bullish_keywords = [
'bullish', 'surge', 'rally', 'gain', 'rise', 'soar',
'adoption', 'breakthrough', 'positive', 'growth', 'boom'
]
# Bearish keywords
bearish_keywords = [
'bearish', 'crash', 'plunge', 'drop', 'fall', 'decline',
'regulation', 'ban', 'hack', 'scam', 'negative', 'crisis'
]
bullish_count = sum(1 for word in bullish_keywords if word in text_lower)
bearish_count = sum(1 for word in bearish_keywords if word in text_lower)
if bullish_count > bearish_count:
sentiment = "bullish"
confidence = min(0.8, bullish_count * 0.2)
elif bearish_count > bullish_count:
sentiment = "bearish"
confidence = min(0.8, bearish_count * 0.2)
else:
sentiment = "neutral"
confidence = 0.5
return {
"sentiment": sentiment,
"confidence": confidence,
"method": "keyword_based",
"timestamp": datetime.now().isoformat()
}
# Factory function
def get_analyzer() -> Any:
"""Get appropriate analyzer based on availability"""
if TRANSFORMERS_AVAILABLE:
return HuggingFaceAnalyzer()
else:
logger.warning("⚠️ Using simple analyzer (transformers not available)")
return SimpleHuggingFaceAnalyzer()
async def main():
"""Test HuggingFace models"""
print("\n" + "="*70)
print("🤗 Testing HuggingFace AI Models")
print("="*70)
analyzer = get_analyzer()
# Test sentiment analysis
test_news = [
"Bitcoin surges past $50,000 as institutional adoption accelerates",
"SEC delays decision on crypto ETF, causing market uncertainty",
"Ethereum network upgrade successfully completed without issues"
]
print("\n📊 Testing Sentiment Analysis:")
for i, news in enumerate(test_news, 1):
result = await analyzer.analyze_news_sentiment(news)
print(f"\n{i}. {news[:60]}...")
print(f" Sentiment: {result['sentiment']}")
print(f" Confidence: {result['confidence']:.2%}")
# Test if advanced features available
if isinstance(analyzer, HuggingFaceAnalyzer) and analyzer.models_loaded:
print("\n\n🎯 Testing News Categorization:")
categorization = await analyzer.categorize_news(test_news[0])
print(f" Category: {categorization['category']}")
print(f" Confidence: {categorization['confidence']:.2%}")
print("\n\n📈 Testing Aggregated Sentiment:")
mock_news = [
{"title": news, "description": "", "coins": ["BTC"]}
for news in test_news
]
agg_sentiment = await analyzer.calculate_aggregated_sentiment(mock_news, "BTC")
print(f" Overall: {agg_sentiment['overall_sentiment']}")
print(f" Score: {agg_sentiment['sentiment_score']}/100")
print(f" Confidence: {agg_sentiment['confidence']:.2%}")
if __name__ == "__main__":
asyncio.run(main())
|